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CHAPTER 1

INTRODUCTION

A single sensor (or receiver) such as an antenna or a microphone can deduce many
properties of a received signal—e.g., its temporal properties (waveform, spectral
shape, etc.). Quite often, such sensors have an omnidirectional response—i.e.,
they are insensitive to the direction of incident signals.

Some sensors—of which a parabolic antenna is an example—have a response that
varies with the direction of an incoming signal. The parabolic dishes and slotted an-
tennas used in radar and communications are familiar examples. Such directional
sensors can be used to discriminate in favour of signals from certain directions, to
attenuate noise, or to deduce the direction of arrival of a signal. These capabilities
make them extremely useful and thus they find widespread application1.

Omnidirectional response Directional response 

FIGURE 1.1. Illustrating directional response of a sensor

However, there are evident disadvantages in the use of directional sensors: to max-
imise their sensitivity to signals from different directions they must be physically
rotated, and it is difficult to distinguish between more than one source simultane-
ously. Furthermore, their directional response is difficult to change.

To overcome these limitations, we can use multiple receivers, arranged in an array.
An array of receivers, suitably deployed and with appropriate signal processing,
provides more gain and better system performance than just a single receiver. Such

1See [24] for a detailed description of the theory and practice of such sensors.
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1. INTRODUCTION 7

arrays are widely used – in radar, sonar, medical diagnostics, radio and optical as-
tronomy and seismology, for example. The configuration of receiving arrays can
take many forms as illustrated in Figure 1.2. Array processing is a branch of signal
processing concerned with using the outputs of spatially distributed receivers to ex-
tract information about the properties of signals and noises incident upon the array.
In signal processing, we usually sample the waveform to produce a time series.
With an array of receivers, we do the same in space; array processing thus operates
with both temporal and spatial data and is often termed space-time processing.

The angular resolution of arrays de-
pends largely on their size (loosely
termed aperture): the bigger the
aperture, the better the resolution as
a rule. However, the geometry of the
array needs careful design. Arrays
can be densely filled (as with the
grid array shown above) or sparse
(as illustrated by the circular array
above); selection of an inappropriate
geometry can penalise performance.
If the array is moving (for example,
if it is a radar on an aircraft or satel-
lite) it is possible to overcome the
limitations of size by coherent pro-
cessing of the array signals; such
synthetic aperture radars give an
effective array aperture much larger
than the physical size of the array,
and hence greatly increased resolu-
tion. Such techniques have been
exploited in remote sensing and in
radio-astronomy.

Circular

Grid

Linear

Planar




Conformal (on the surface of some structure,
such as the bow of a vessel)

Volume (e.g., on and within the surface
of a sphere)

FIGURE 1.2. Some array configurations

In general we consider the outputs of receivers in some sort of field – e.g., acoustic
or electromagnetic – which can be considered as the superposition of propagat-
ing waves. If the waves arise from a distant (far-field) source, they can usually
be treated as plane waves (i.e., having a plane wavefront, as illustrated in Fig-
ure 1.3). However many of the concepts developed here can be extended to near-
field sources for which the wavefront is curved.
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Nearfield: wavefront is curved Farfield: plane wavefront

FIGURE 1.3. Illustrating near- and far-field wave propagation

Here we are not much concerned with the types of signal energy – they could be
electromagnetic, acoustic, seismic, etc., – nor shall we consider in detail specific
types of transducers such as antennas, hydrophones, geophones, etc. What we shall
attempt is a generic formulation emphasising principles common to many types of
arrays and applicable to both active and passive systems. Examples of applications
from specific systems will, however, be given.

K

1

2

3
+

Signal from a distant
source arriving

in a plane wavefront

Wavefront Linear array of
K receivers

FIGURE 1.4. Conventional beamforming – array steered broadside

Essentially, the idea behind array processing is to use more than one receiver to
sample the signal and noise field; by knowing more about these we can enhance the
signal, suppress noise and reject interfering signals. The simplest array processor
is illustrated in Figure 1.4. It shows a uniform linear array of K receivers arranged
in a straight line. A signal from a far-field source at right angles to the array would
arrive as a plane wavefront, striking all the receivers at the same time. If all the out-
puts of all the receivers are added together, those signals will be reinforced. Signals
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from other directions do not reinforce and will tend to be suppressed. Similarly,
noise – for example, receiver noise – is random and will not be reinforced. The
effect is that signals are received preferentially from one direction, and we speak
of forming a receive beam.

Later we shall develop this basic idea more. We shall show that – as intuition might
suggest – the more we know about the signal and the noise, the better we can en-
hance the signal and suppress the noise. In the example in Figure 1.4, reception is
from one direction only; if we wish to reinforce a signal from another direction, we
could steer the receiver beam by rotating the whole array mechanically so that is
lies perpendicular to the new direction. (Some surveillance radars and communica-
tions systems scan mechanically in this way.) We shall later consider alternatives
to mechanical rotation, using electronic steering to achieve a similar result. An
enormous advantage of such electronic beamsteering is that it allows us to invoke
the power of digital signal processors to form many beams simultaneously, thus
providing instantaneous coverage over a wide angular sector.

Arrays were used at least as far back as World War I to detect submarines. With
the advances in electronics after World War II, developments in signal processing,
including for arrays of receivers, progressed rapidly. In recent times, the dramatic
development of computers and associated digital electronics has allowed the im-
plementation of many theoretical developments. Uses of receiver arrays include
the following.

Signal detection. One of the primary roles of an array of receivers is
to improve the detection of signals. Often weak signals are difficult to
detect and single-channel processing techniques such as filtering, spec-
trum analysis, etc., may not provide sufficient gain to discriminate against
background noise, receiver noise or unwanted signals (interference) from
discrete directions. By coherently processing the outputs of an array of
receivers, gain is increased and thus the overall system detection thresh-
old is lowered. This is achieved by either suppressing noise or by the
rejection of interfering signals.

Signal estimation. With an array of receivers distributed spatially we
may, by either combining the receiver outputs or by employing multi-
variate statistical techniques, estimate signal properties that are usually
unobtainable from a single receiver. Such properties include

– direction,
– range,
– propagation speed and
– propagation modes.
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Noise estimation. In many cases arrays are used not to characterise par-
ticular isolated signals but to estimate the angular (or wavenumber) dis-
tribution of some naturally occurring or man-made noise field. For exam-
ple, in sonar, vertical line arrays have been extensively used to measure
the vertical directionality of noise within the ocean. In radio astronomy,
large radio-telescope arrays have been used to map the distribution of ra-
dio frequency energy of far-off galaxies.

Resolution of sources. Whether considering either signals or noise it is
often important to discriminate between different sources of energy. As
mentioned earlier, arrays have the ability to differentiate energy from dif-
ferent directions and when this information is used in conjunction with
a little physics, it often provides valuable clues for the discrimination
between sources. This use of arrays – particularly with advanced high-
resolution signal-processing algorithms – has been a popular area of re-
cent research.

Target tracking and localisation. Once sources (targets) have been de-
tected and classified, the results are commonly used as inputs to tracking
algorithms. Most commonly it is the measured directional parameters,
viz., azimuth and elevation, that are used. When there is more than one
array, techniques such as triangulation can be used to localise targets.
More recently, particularly in the sonar area, matched field array pro-
cessing, which assumes a knowledge of the propagation conditions, has
been used to develop methods which allow localisation as well as tracking
to be carded out with a single array.

Applications include:

• exploration seismology (using geophones on land and hydrophones at
sea)

• sonar (using hydrophones – hull-mounted, towed line arrays, sonobuoy
arrays, bottom-mounted arrays)

• radar (using antennas in line or grid arrays)
• radio astronomy (using movable dishes to generate a large effective array

aperture)
• ultrasound (high-frequency acoustic transducers).
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FIGURE 1.5. Seismic survey vessel towing a number of hydrophone arrays

FIGURE 1.6. Arrays of hydrophones are deployed on the ocean
bottom; signals are transmitted by cable to shore

FIGURE 1.7. Submarines carry a number of arrays mounted the
hull typically on the flank and conformally distributed on the bow
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FIGURE 1.8. Very long, flexible arrays are towed behind submarines

FIGURE 1.9. Passive receiving arrays of hydrophones are de-
ployed in sonobuoys dropped from aircraft. The figure illustrates
the deployment of the Australian-developed Barra sonobuoy.
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FIGURE 1.10. Over-the-horizon radars operate by refracting HF
radio waves from the ionosphere; they typically use antenna ar-
ray kilometres in length. The figure shows one of the Australian
Jindalee radar receivers.
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FIGURE 1.11. Radio telescopes use large paraboloidal dishes on
railway tracks to give an receiving aperture of variable size. The
Australia radioastronomy telescope is shown in the photograph.

We describe here some techniques for processing signals from arrays of receivers.
In the first few chapters, we deal solely with deterministic signals. We begin in
Chapter 2 with models of signal and noise. Chapters 3 and 4 give an introduction
to conventional beamforming and beamsteering and some techniques for shaping
the beam pattern. Then in Chapter 5 the advantages and disadvantages of various
array geometries are discussed.

In Chapters 6 and 7 we introduce the concept of steered beams and wavenumber.
Chapter 8 considers random processes and Chapter 9 develops expressions for ar-
ray gain.

Various methods for optimal processing in the frequency domain are discussed in
Chapter 10. In Chapter 11 we consider operations using finite samples of the data
and their effect on performance.

Chapter 12 addresses gradient descent methods and Chapter 13 space-time adap-
tive processing. Finally, in Chapter 14, we introduce subspace methods.

Readers are assumed to have some familiarity with optimisation theory, probability
theory and matrix operations. Some revision notes are provided in Appendix A –
C.

In the text are analytical Problems, and hyperlinks to Exercises that use the Matlab-
based Beamforming and Array Processing (BAP) toolbox supplied with these course
notes. BProblem E.1

BEx 1



CHAPTER 2

MODELS

2.1. Introduction

In deriving signal processing techniques, we attempt to represent or model the real
world mathematically. Not surprisingly, if our model is a close representation of
the physical world, we get good results; conversely, if we select a poor model, the
results can be very bad. The model we choose is thus critical to the success of
our signal processing techniques when we seek to apply it. As mentioned in the
preceding chapter, array processing is concerned with handling functions of both
time and space; thus we need to develop a realistic model of both the temporal and
the properties of our signals and of our noises.

It goes without saying that we must have a good understanding of the physical
environment in which our system operates and of the design details of the system.
For example, if our problem is signal processing for microwave radar, it is generally
reasonable to assume that the electromagnetic waves propagate in straight lines;
that assumption is not true for HF over-the-horizon radar which is affected by the
earth’s ionosphere, nor for long-range propagation of sound in the ocean, nor for
propagation of seismic energy in the earth. In some systems, noise arises mainly
from external sources; in others, the principal interference is from receiver thermal
noise.

In this chapter we introduce the models used for signal and noise and the notation
used. We cover:

• propagating fields
• propagation modes
• representation of receiver outputs
• signal models
• noise sources
• ambient noise.

2.2. Propagating fields

We consider sensors immersed in a field which is comprised of the superposition
of sinusoidal waves propagating through some medium. The sensors convert the
signals in the medium to electrical signals that we then process1. For the sake of

1In this course we assume throughout that the sensors themselves do not in any way distort the
physical environment in which they are immersed. The implication is that each receiver is assumed

15



2.2. PROPAGATING FIELDS 16

simplicity we shall only consider scalar fields (such as acoustic fields). If t is time
and u is the vector of coordinates of a point in space:

u =

x
y
z

 , (2.1)

then the field can be denoted by f(u, t). As mentioned in Chapter 1, we shall
assume throughout that the sensors are sufficiently distant from the sources of all
these waves for us to be able to treat the waves as plane. Further, we assume that
the medium in the vicinity of the array is homogeneous (i.e., its properties do not
vary spatially).

Let us consider a single plane wave ar-
riving at the array from azimuthal and el-
evation directions θs and φs respectively,
as illustrated in Figure 2.1. At a single
frequency f , the time at which a plane
wave arrives at point u is given by d/c,
where

d = x cos θs sinφs

+ y sin θs sin φs + z cos φs

and c is the speed of propagation in the
medium.

y

z

x

φ
s

θs

Incoming wave

Receiver

FIGURE 2.1. Coordinate system
Let us write

ks =

 (ks)x

(ks)y

(ks)z

 =
2π

λ

cos θs sinφs

sin θs sinφs

cos φs

 , (2.2)

where λ is the wavelength. Let us denote the transpose of a vector (or matrix) by
T . Then

kT
s u =

2π

λ

[
cos θs sinφs sin θs sinφs cos φs

] x
y
z

 = 2πd/λ, (2.3)

so we can represent the propagating plane wave as

f(u, t) = α exp{i(ωt + kT
s u)}, (2.4)

to be ‘transparent’ and that its presence does not affect the signals at arriving at any other receiver of
the array.
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where (α is the amplitude and ω = 2πf and ks is called the signal wavevector2. In
general we shall consider a field comprised of an arbitrary number of such plane-
wave signals, of different frequencies and of different directions of arrival.

2.3. Propagation

As discussed in Section 2.2 we shall restrict our attention to fields that can be
modelled as plane waves incident upon the array. This implies that the speed of
propagation c across and within the array should be constant—i.e., the medium
is locally homogeneous. However, this does not mean that c need be globally
constant; there are many situations in practice where c can be taken to be constant
locally but varies over a large scale and, when it does, energy can propagate from
source to receiver via different modes or different paths. We give some examples
in the next section.

Signal propagation varies widely according to the application and affects the model.
There are in practice very many, and quite different, modes of propagation and it
is not possible to cover all of these. In this section we seek only to illustrate a
few of the types of propagation that can occur, and point out the necessity of un-
derstanding the propagation conditions that prevail in the particular problem being
addressed.

While in general these often do not affect our array processing algorithms—pro-
vided the medium is homogeneous in the vicinity of the array—it is important
to understand these propagation modes when using and interpreting the results
of our array processing. For example, in underwater sound propagation, we can
have multipath arrivals that are correlated with one another; it is important then to
include such correlation in the model.

It should be stressed however in a significant number of cases c will not be constant
within the array neighbourhood. For example, in shallow water, vertical line arrays
of hydrophones may extend over the whole water depth and at certain frequencies
beamforming assuming plane waves may give results that are far from optimum.
Furthermore, in such situations, if there is knowledge of propagation modes (and
if they can be modelled well), then this can be used to advantage. This is done in
matched field processing where the coherent processing underlying array process-
ing is extended to include the propagation model. In this way the concept of array
processing is dramatically extended to source localisation.

2Such a function is the solution of a wave equation of the form

c2∇2f(x, t) =
∂2

∂t2
f(x, t),

where

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

and c is the speed of propagation. In many applications c is constant.
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Below we consider some examples of different propagation modes for different
types of fields and applications.

2.3.1. Radio waves.
At microwave frequencies, electromagnetic waves generally propagate in straight
lines through the atmosphere and space. At HF, however, electromagnetic propa-
gation is affected by the ionosphere which is a region with ionised particles formed
by the effect of solar radiation on the upper reaches of the earth’s atmosphere. Its
properties are measured by the free electron density. Because the electron density
varies with altitude, an electromagnetic ray propagating through it will be bent. In
Figure 2.2 we illustrate a ray that is curved towards the surface of the earth. On
striking the surface, the ray will be reflected and trace a similar path through the
ionosphere again.

IO
NOSPHERE

Microwave

HF

Not to scale

FIGURE 2.2. Propagation of electromagnetic waves

The ray paths illustrated in the figure are idealised; in practice the ionosphere is far
from smooth and uniform. It may for example have two or more layers as illus-
trated in Figure 2.3; there might as a result be complex paths between a transmitter
and a receiver. Ionospheric conditions vary with the time of day, season of year
and even according to the 11-year sunspot cycle.

Ion
osp

heric
lay

er

Ion
osp

heric
layer

Not to scale

FIGURE 2.3. Complex radio propagation via the ionosphere
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2.3.2. Acoustic waves in the sea.
There are similarly complex conditions in the ocean for acoustic waves. Propa-
gation there is determined largely by the speed of sound in seawater which is not
uniform but increases with temperature, pressure and salinity.

Near the surface of the sea, water is often well mixed, in which case the temperature
is nearly constant. Below the mixed layer, temperature tends to fall rapidly in the
so-called thermocline. At great depths the water is once again at a substantially
constant temperature. These variations are illustrated in Figure 2.4.

Mixed layer

Thermocline

Not to scale

D
epth

Temperature Speed of sound
Surface

FIGURE 2.4. Temperature and speed profiles in the ocean

The speed of sound is very sensitive to temperature; in the thermocline, where the
temperature falls rapidly, so does the speed of sound. On the other hand, near the
surface of the sea and at great depths, the temperature is substantially constant;
in those regions the effect of pressure predominates and the speed increases with
depth. The result is a profile of sound speed vs depth sketched in Figure 2.5. This
profile affects the propagation of sound in a complicated way. In the mixed layer
near the surface, a ray at a small angle to the horizontal is bent upwards towards
the surface where it is reflected. In this way sound waves are trapped in the so-
called surface duct. Other rays at a slightly steeper angle propagate down below
the mixed layer and are bent downwards and then upwards, eventually to reappear
at the surface some 50 km away, as illustrated in Figure 2.5. Other rays at yet
steeper angles strike the bottom.
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D
epth

Surface
Ray pathsSpeed of sound

Surface duct Convergent zone

Bottom

NOT TO SCALE

Bottom
bounce

FIGURE 2.5. Temperature and speed profiles in the ocean

2.3.3. Seismic waves in the earth.
More complex still is the propagation of seismic waves in the earth, which is of
great interest to petroleum exploration geophysicists, for example. The earth has
very complex structures which affect seismic wave propagation. Not only does
the speed of propagation change with rock type and with pressure (depth), but in
addition there are different modes of propagation: longitudinal waves (or p-waves
with vibrations in the same direction as the propagation) as well as transverse
waves (or s-waves with vibrations at right angles to the direction of propagation).
On encountering a boundary between two rock types, there can be mode conversion
from p- to s-waves, and vice versa, as illustrated in Figure 2.6.

Rock 1

Rock 2

Incident p-wave

Transmitted s-wave

Transmitted p-wave

Reflected p-wave

Reflected s-wave

FIGURE 2.6. Partitioning of energy at a boundary between rocks

2.4. Noise

Noise can arise from many causes. There is internal noise of the system itself—
for example, thermal noise in the receiver—and external (or ambient) noise from
outside the system. In HF radar, external noise could, for example, result from
distant thunderstorms or from other users of the HF band. In sonar, it can come
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from ships, marine life, waves or rain. Seismic measurements can be contaminated
by interference from mining operations.

When noise sources are uniformly distributed around the array, as illustrated in
Figure 2.7, the noise is called isotropic.

0◦ Angle 360◦

Intensity is constant

In
te

ns
ity

FIGURE 2.7. Isotropic noise

Figure 2.8 shows non-isotropic noise. A discrete noise source (i.e., one that comes
from only one direction) is referred to as an interference.

0◦ Angle 360◦

Intensity varies with the direction

In
te

ns
ity

FIGURE 2.8. Non-isotropic noise

The term interference is used to denote some unwanted signal source arriving at
the array from a discrete direction. Such interference can be deliberate (jamming)
or accidental.

2.5. Representation of the receiver outputs

We shall model each receiver as a transducer which converts the energy in the
incident field to electrical signals. The transducer is assumed to be free of non-
linearities so that the principle of superposition applies and the receiver outputs
can be represented as a linear combination of signal and noise components.
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Denoting the continuous time output of the j th receiver after suitable filtering and
down-conversion as xj(t) we can then write

xj(t) = sj(t) + nj(t) (2.5)

and for an array of K receivers we shall use the vector notation3:

x(t) =


x1(t)
x2(t)

...
xK(t)

 , s(t) =


s1(t)
s2(t)

...
sK(t)

 , n(t) =


n1(t)
n2(t)

...
nK(t)

 (2.6)

and thus

x(t) = s(t) + n(t). (2.7)

We shall, in general, represent receiver outputs as complex quantities which we
idealise to be the complex spatial samples of the incident field f(uk, t), where
uk is the position the k th receiver. Furthermore, in most modern systems the
receiver outputs are, after suitable filtering and down-conversion, sampled in time.
Assuming a uniform time sampling interval ∆t then our receiver outputs can be
represented as a space-time sampling of the complex field—i.e., f(uk, j∆t). As
we shall see later (in Chapter 12, this sampling in both space and time plays a
fundamental and important role in array processing.

However, in many cases the time sampling is-
sues are not of primary importance and for
ease of notation we shall often use a contin-
uous time representation of the receiver out-
puts. We frequently represent the receiver
outputs as complex quantities. In electronic
engineering terms, the real component would
correspond to the output of an in-phase re-
ceiver, and the imaginary component to that
of a quadrature receiver, as shown in Fig-
ure 2.9. We then have:

90◦

xj(t) uj(t)
In-phase
(real)

vj(t)
Quadrature
(imaginary)

FIGURE 2.9. Complex representation

x(t) =


x1(t)
x2(t)

...
xK(t)

 =


u1(t)
u2(t)

...
uK(t)

+ i


v1(t)
v2(t)

...
vK(t)

 . (2.8)

Most receivers either by nature of construction or by design effect some temporal
filtering of the incident field. Thus it is important to consider the frequency band-
width of the receiver outputs as practical systems vary greatly in this aspect from

3We use lower case boldface characters for vectors and upper case boldface for matrices.
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application to application. For example, the output signals from a passive sonar
array of hydrophones typically can have a bandwidth from 10 Hz to 1000 Hz—a
range of two decades. On the other hand, the outputs of a phased array radar may
typically have a centre frequency of 10 GHz and a bandwidth of a few hundred
MHz. Whilst we do not wish to describe and model specific systems in detail here,
it is useful to consider a few of the generic classes that are commonly used. Bear in
mind that these are not exhaustive and that for particular signals and noise we can
often gain greater insight and improved array performance by considering more
specific models for our receiver outputs.

2.6. Overview

In this chapter we have covered briefly

• the dependence of signal processing on an adequate mathematical repre-
sentation of the real world,

• propagating signal and noise fields,
• how propagation varies according to the medium,
• the representation of received signals and noise as complex vectors.

In this course we assume that the signals arrive at the array as plane waves and that
the medium in the vicinity of the array is homogeneous.

Noise can arise from within the receiving system (‘receiver noise’) or externally
(‘ambient noise’). Discrete noise sources (unwanted signals) are called ‘interfer-
ence’.

Understanding how wanted signals and unwanted noises propagate to the array
often allows signal processing to be devised to discriminate between them.

The outputs of the receiving array are represented as complex vectors.

Summary

(1) We need a good model of our environment if our signal processing is to be
effective.

(2) Propagation of energy may not be in straight lines.

(3) Noise can arise from the receiver system itself (self-noise) and from a variety of
external sources (ambient noise and interference).



CHAPTER 3

BEAM PATTERN

3.1. Linear array, broadside signal

3.1.1. Concept.
Consider a linear array as shown in Figure 3.1 in a homogeneous (i.e., uniform)
medium with a single far-field signal source and assume each receiver is free of
noise. Under these conditions the signal arrives at the array as a plane wavefront.

×
1/K

x1

×
1/K

x2

×
1/K

x3

×
1/K

xK

+
y(θ0, θ, t)

FIGURE 3.1. Conventional beamformer – steered broadside

To detect a signal arriving at right angles (broadside) to the array axis the outputs
of all K receivers are added, as illustrated in Figure 3.1. (For mathematical conve-
nience, we scale the amplitudes of the receiver outputs by 1/K.1 ) If a source is
in a direction normal to the array, the receivers outputs are all in phase, and when
summed reinforce one another2. Signals from other directions will not be in phase
and so will not be reinforced. This simple example is an elementary, but most

1The same result would of course be obtained by simply multiplying the output of the adder by
1/K.

2This is an example of coherent summation.

24
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useful, type of conventional beamformer3 and the output is termed the broadside
beam.

In all that follows it is assumed that all receivers are omnidirectional in their re-
sponse and have the same sensitivity, and that the geometry of the array is known
exactly. Further, although in this chapter only plane-wave signals are considered,
the results obtained can be applied directly to signals of narrow bandwidth.

If xj(t) is the output of the j th receiver, the output of the array processor, i.e., the
time series of the broadside beam, y(t), is

y(t) =
1
K

K∑
j=1

xj(t).

To demonstrate how well the broadside conventional beamformer suppresses sig-
nals not from the broadside direction, the power out of the array (i.e., after summa-
tion) is plotted as the direction of the source4 is varied. This function is defined to
be the polar response or beam pattern of the array. By convention it is normalised
to be unity in the beamsteered direction. BEx 2 1–2 3

The beam pattern of an array is a function of both the horizontal angle θs and the
vertical angle φs of the incident direction of the plane wave with respect to the
array. Thus the beam pattern is a 3-dimensional surface. In most of what follows
we shall consider only the beam pattern in the horizontal plane – i.e., the response
of the array as a distant signal source is moved in the horizontal plane around the
array.

The beam pattern of the linear array of Figure 3.1, with 15 receivers spaced half
a wavelength apart, is shown on a polar plot in Figure 3.25. Note that the beam
pattern of a linear array is symmetrical about the axis of the array.6

In Figure 3.3 the same beam pattern is presented, but plotted in dB on cartesian
coordinates and from -90◦ to +90◦. The beam pattern is very important as it gives
both a quantitative and, when plotted, a visual display of how well the beamformed
output of the array discriminates between the desired signal and unwanted signals
from other directions. The direction of peak response is termed the maximum
response axis (MRA).

The beamwidth (i.e., the width of the main lobe) is often defined as the angle be-
tween the points at which the amplitude of the beam pattern falls to half or by 3dB;
the beamwidth indicates the ability to resolve signal sources whose arrival direc-
tions are closely spaced. Subsidiary peaks are termed sidelobes; their amplitude is
a measure of susceptibility to interference by unwanted signals in directions away

3This type of beamformer is often colloquially referred to as an add-squarer.
4An incident plane wave.
5An expression for this will be derived shortly.
6This should be obvious from a consideration of the geometry. In fact, because of rotational

symmetry, linear arrays are inherently unable to distinguish between signals arriving from a cone
about the axis of the array; therefore for linear arrays only angles between −π/2 and π/2 will be
plotted.
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FIGURE 3.2. Polar beam pattern – array of 15 receivers uniformly spaced
half a wavelength apart, steered broadside. The lower figure shows an
expanded view of the sidelobes.
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FIGURE 3.3. Cartesian beam pattern – 15 receivers uniformly spaced half
a wavelength apart, steered broadside

from the main lobe. If the level of the sidelobes could be reduced to zero, interfer-
ing sources outside of the main lobe could be completely rejected. Unfortunately,
that is impossible: the response can be made zero at discrete points but cannot be
made zero everywhere.

3.1.2. Expression for the beam pattern.

An expression for the beam pattern of
a narrowband linear array of equally-
spaced receivers designed to receive
signals from broadside is now de-
rived. Consider a system of coordi-
nates as illustrated in Figure 3.4, with
the receivers along the y-axis. Using
the notation of Section 2.2, the coor-
dinates of the j th receiver are:a

uj =

 0
[j − 1]d

0

 (3.1)

where d is the inter-element spacing.

aThe origin is arbitrary and is chosen for con-
venience.

x

y

d

2d

3d

(K − 1)d

0

θs

Wave front

FIGURE 3.4. System of coordinates

The response of the broadside beam to a single sinusoidal signal arriving as a plane
wavefront from a direction θs in the horizontal plane, (ie, φs = 900) will now be
considered.

From (2.4) the signal sj(t, θs) at the jth receiver is given by

sj(t, θs) = s(t) exp(ikT
s uj) (3.2)



3.1. LINEAR ARRAY, BROADSIDE SIGNAL 28

where s(t) = exp{iωt} is the output of the first receiver located at the origin.
Substituting

ks =
2π

λ

cos θs

sin θs

0

 (3.3)

it follows that sj(t, θs) = s(t) exp
(

i2π(j − 1)d sin θs

λ

)
(3.4)

(Note from Figure 3.4 that the plane wave is received at the jth receiver

(j − 1)d sin θs

c
,

in advance of that at the origin and the phase factor in the above expression is just
the phase rotation corresponding to such a time difference.7)

The term exp
(

i2π(j − 1)d
λ

sin θs

)
is called the spatial phase factor.

Writing z , exp
(

i2π

λ
d sin θs

)
(3.5)

and vj(θs) = zj−1, (3.6)

gives sj(t, θs) = s(t)vj(θs). (3.7)

(3.7) shows that, for narrowband signals, the receiver output can be factored into
two factors: the signal waveform s(t) received at some (arbitrary) reference point
(chosen for convenience to be the origin) and a spatial phase factor vj(θs) which
depends only on θs. This factorisation into temporal and spatial components sim-
plifies the subsequent analysis considerably. Note also that the spatial phase factor
is dependent on the ratio d

λ , a dimensionless quantity.

Using the notation introduced in Chapter 2 the vector of receiver signal outputs,
i.e.,

s(t) =


s1(t)
s2(t)

...
sK(t)

 , (3.8)

is given by s(t) = s(t)v(θs) (3.9)

7c = speed of propagation in the medium and λ = wavelength of the signal.
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where the vector v(θs), termed the steering vector, is given by

v(θs) =


1

exp
(

i2π
λ d sin θs

)
exp

(
i2π
λ 2d sin θs

)
...

exp
(

i2π
λ (K − 1)d sin θs

)

 (3.10)

In this case, with no noise present and with only a single signal source, the broad-
side beamformer output is written as y(0, θs, t), where s denotes that this is the
signal-only case, 0 denotes the broadside beam, and θs is the direction of arrival of
the signal. Summing the outputs of the K receivers gives

y(0, θs, t) =
1
K

K∑
j=1

sj(t, θs) =
1
K

s(t)
(
1 + z + z2 + · · ·+ zK−1

)
. (3.11)

This is the sum of the terms of a geometric progression and so

y(0, θs, t) =
1
K

s(t)
(

1− zK

1− z

)
=

1
K

s(t)z(K−1)/2

(
zK/2 − z−K/2

z1/2 − z−1/2

)
(3.12)

which, substituting for z, reduces to

y(0, θs, t) =
1
K

s(t) exp
(

i(K − 1)πd

λ
sin θs

)(
sin
(

Kπd
λ sin θs

)
sin
(

πd
λ sin θs

) ) . (3.13)

The instantaneous power output is

|y(0, θs, t)|2 =
1

K2
|s(t)|2

(
sin
(

Kπd
λ sin θs

)
sin
(

πd
λ sin θs

) )2

. (3.14)

Note that |y(0, 0, t)|2 = |s(t)|2. The second term on the right in (3.14), which is
independent of the temporal waveform of the signal, describes the response of the
broadside linear array beamformer as the signal direction θs is varied. This second
term, when normalised to a value of unity at θs = 0, is called the beam pattern of
the array 8:

P (0, θs) =
|y(0, θs, t)|2

|y(0, 0, t)|2
=

1
K2

(
sin
(

Kπd
λ sin θs

)
sin
(

πd
λ sin θs

) )2

. (3.15)

P (0, θs) is shown plotted in dB in Figure 3.3.

8Exercise: Satisfy yourself that limθs→0
sin( Kπd

λ
sin θs)

sin( πd
λ

sin θs)
= K
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(3.15) can be simplified by writing

(ks)y =
2π

λ
sin θs cos(0), (3.16)

so we have P (0, (ks)y) =
1

K2

{
sin((ks)yKd/2)
sin((ks)yd/2)

}2

. (3.17)

Note that (ks)y is the component of the wave-vector along the axis of the array.

Finally using vector notation the beam pattern can be written as

P (0, θs) =
1

K2

∣∣vH(0)v(θs)
∣∣2 ,

where H denotes the complex conjugate (Hermitian) transpose of a vector: vH =
v∗T and

v(0) =


1
1
...
1

 .

eiφjt

Rotating vector

Reinforcement Partial interference Cancellation

FIGURE 3.5. Phasor representation

An alternative, graphical representation of the beamformer output can be obtained
by considering a phasor representation, exp(iθj), where the phasor angle, θj is
given by 2π(j−1)d

λ sin θs.

For the add-squarer illustrated in Figure 3.1, a broadside signal will arrive at all the
receivers in phase and will reinforce. For other signal directions, there will be a
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phase shift between the outputs of the different receivers, because of the different
propagation delays, as illustrated in Figure 3.4.

For a uniformly-spaced linear array the phase shift between adjacent receivers is
identical. The vectors are then rotated before addition as illustrated in Figure 3.5.
It is apparent that the sum is reduced in amplitude when a phase shift is introduced,
with nulls at some phase shifts (i.e., corresponding to certain directions).

3.1.3. Properties of the beam pattern.

3.1.3.1. Inter-element spacing and array aperture.

Note that in (3.15) and (3.17) the beam pattern is dependent on d/λ, i.e., it is a
function of the ratio of the inter-element spacing to the wavelength, and not of their
absolute values. Kd in the numerator is called the effective array aperture; for
large K it is approximately equal to the total physical length of the array (K−1)d.

This is illustrated in the table below for a sonar and radar array. The speed of sound
in water is very much less than that of radio waves, and the sizes of arrays and their
operating frequencies tend to be very different for these two applications; yet when
d/λ and Kd/λ are the same exactly the same beam pattern is obtained in each
case.

Sonar array Radio array

Speed of propagation 1500 m/s 3× 108 m/s

Frequency 150 Hz 10 GHz

Wavelength λ 10 m 3 cm

Inter-element spacing d 5 m 1.5 cm

d/λ 0.5 0.5

No of elements K 15 15

Kd/λ 7.5 7.5

Beamwidth 6.7◦ 6.7◦

3.1.3.2. Maximum response axis and main lobe. As planned, the maximum
response axis (MRA) is in the broadside direction, and this is so for all K (i.e.,
whatever the number of receivers) and for all frequencies.

The beamwidth is defined as the angle between half-power (or 3dB) points and is
a good measure of the ability of the array to resolve signal sources with similar
directions of arrival. Usually the design aim is to make the beamwidth small.
However, in many practical situations where the incident direction of the desired
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signal is unknown and it is only possible to form a finite number of beams, some
tolerance in the MRA is required – a finite beamwidth provides this.

For signals within the beamwidth, arrivals at the receivers are substantially co-
herent and tend to reinforce. Thus signals whose arrival directions lie within the
beamwidth are unlikely to be resolved.

The 3-dB points of the main lobe of the broadside beam pattern are obtained from
(3.15); writing γ = Kπd sin θs/λ, we have

P (0, θs) =
( sin γ

K sin(γ/K)

)2
(3.18)

=
1
2

when
sin(γ)

K sin(γ/K)
=

1√
2
. (3.19)

For γ/K � 1, this occurs when

sin γ

γ
' ± 1√

2
. (3.20)

The solution is obtained using numerical tools: γs ' ±1.392, and

sin θs ' ±
1.392λ

πKd
(3.21)

' ±0.443
λ

Kd
. (3.22)

The two 3-dB points are given by

sin θ3dB = ±0.443λ

Kd
, (3.23)

so the beamwidth is given by

Beamwidth ' 2 arcsin
(0.443λ

Kd

)
. (3.24)

For Kd/λ � 1 the above expression reduces to

Beamwidth ∼ 0.88λ

Kd
radians, or

50λ

Kd
degrees . (3.25)

An approximation for the beamwidth that is sometimes used takes the smallest
angle θs at which P (0, θs) = 0, viz., when

θs = sin−1

(
λ

Kd

)
= sin−1

(
c

Kfd

)
, (3.26)

where c is the velocity of wave propagation and f is frequency.

Using this expression gives the beamwidth between the points at which the beam
pattern falls to 4/π2 or −3.9dB.
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Note that beamwidth is inversely proportional to the aperture measured in wave-
lengths. (3.26) shows that, for a fixed array geometry, the width of the main
beam is narrowed as wavelength is decreased (i.e., as frequency is increased), in-
dicating an improvement in the ability to resolve signals at higher frequencies.
These effects are illustrated in Figure 3.6, where we plot beam patterns for d/λ =
0.333, 0.5, 0.833 and 1.0. λ cannot be decreased without penalty: for λ ≥ d we
observe “grating lobes”, which are discussed in Section 3.5. 9

3.1.3.3. Nulls of the beam pattern. When the phasors sum to zero (as illus-
trated in Figure 3.5), the beam pattern exhibits a null, implying exact cancellation
of a signal in that direction.10 So if there is an unwanted signal there, no matter
how strong, it will not interfere with the desired broadside signal. Thus the number
and position of such nulls is of particular interest to a system designer.

From (3.17) the response is zero when

(ks)y =
2nπ

Kd
, n = ±1,±2, . . . , (3.27)

or θn = sin−1

(
nλ

Kd

)
, (3.28)

where θn is the angle of the nth null of the beam pattern.

The adjacent diagram provides a conve-
nient way of remembering this formula.
Whenever the total phase change due to
propagation across the whole length of
the array is an integral number of wave-
lengths, the array output is zero.
For nulls close to the main beam and
(Kd)/λ � 1,

θn ∼
nλ

Kd
; (3.29)

i.e., the first few nulls are approximately
evenly spaced in angle. (This is not
true in general as Figure 3.3 illustrates,
but nulls are evenly spaced when plotted
against (ks)y or against sin θs.)

θn

Kd

nλ

θn

Direction of

propagation

3.1.3.4. Sidelobes. Now consider the subsidiary peaks, termed sidelobes of
the beam pattern. For K � 1, the numerator in (3.17) changes rapidly compared
with the denominator and to a good approximation maxima occur when 11

9d/λ = 0.5 is often referred to as the design wavelength of the array as it represents a good
compromise between a narrow beamwidth and grating lobes.

10Later we shall see how this can be expressed in terms of orthogonality of vectors.
11Note that, when the beam pattern is plotted against (ks)y , the peaks of the sidelobes lie

half-way between the nulls.
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FIGURE 3.6. Beam patterns for uniform linear array of 15 receivers
steered broadside, for various values of d/λ
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K(ks)yd

2
= (2n− 1)

π

2
, n = ±2,±3, . . . (3.30)

or (ks)y =
(2n− 1)π

Kd
, (3.31)

θmax, n = sin−1

{
(2n− 1)λ

2Kd

}
, (3.32)

where θmax, n is the angle of the nth sidelobe maximum. The peaks of the sidelobes
take values of:

1

K2
{
sin
(

2n−1
2K π

)}2 (3.33)

or approximately
4

(2n− 1)2π2
. (3.34)

The largest sidelobe (which occurs for n = 2) has a peak of 4/9π2 , or −13.5
dB and the sidelobe envelope falls off as approximately 1/x2 Note that these peak
values are independent of K and also of d/λ. However, this result ignores the
effect of grating lobes when d/λ ≥ 1, about which more will be said in the next
section.

Ignoring grating lobes, the number of sidelobe peaks is given approximately by[
2Kd

λ

]
− 1,

where [x] denotes the largest integer ≤ x.
BProblem E.2

BProblem E.3

BProblem E.4

BProblem E.5

BProblem E.6

BProblem E.7

BProblem E.8

3.1.4. Grating lobes (broadside).
Consider the beam pattern of a linear array of receivers, steered at broadside, as
the frequency of the incident plane-wave signal is increased (i.e., the wavelength
is shortened). An example is shown in Figure 3.7 for an array of 15 receivers. At
a wavelength such that d/λ = 1, not only is there a peak at broadside but also
two others at ±90◦. At yet shorter wavelengths, many other peaks appear. Such
spurious peaks are called grating lobes.

By inspection of (3.17) it is obvious that the beam pattern P (0, θs) is periodic. This
is a consequence of the discrete spatial sampling of the wave field which may, by
analogy with temporal sampling of a waveform, give rise to periodic functions and
hence aliasing. In array processing this is referred to as spatial aliasing.12

To understand aliasing from a physical viewpoint consider a broadside signal arriv-
ing at the array, as illustrated in Figure 3.8. In this case the spatial phase factors z
are all unity {1, 1, . . . , 1} (i.e., the signals are coherent). If at the same frequency a

12By analogy with time series, λ/2 is called the spatial Nyquist sampling rate.
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FIGURE 3.7. Illustrating grating lobes for uniform linear array of 15 re-
ceivers steered broadside.



3.1. LINEAR ARRAY, BROADSIDE SIGNAL 37

Time
series

Spatial
factor

eiωt

eiωt

eiωt

eiωt

1

1

1

1

Time
series

Spatial
factor

eiωt

zeiωt

z2eiωt

zK−1eiωt

1

z

z2

zK−1

d sin
θa

θa

z = exp
(

i2πd

λ
sin θa

)

=1 when d sin θa = mλ.

FIGURE 3.8. Illustrating spatial aliasing

signal were to arrive at the array from a direction θa, the spatial phase factor would
become

z = exp
(

i2πd

λ
sin θa

)
.

When sin θa = mλ
d , m = ±1,±2, . . ., z = 1, the received signals would again all

be in phase and would once more be summed coherently. Thus the array would be
unable to tell the difference between a signal from θs = 0 and a signal at θs = θa.
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Such ambiguities manifest themselves as grating lobes and occur when the projec-
tion of the inter-element spacing d along the normal to the wavefront (i.e., d sin θa)
is greater than λ/2.

Taking the broadside case and d/λ = 1 as an example, the condition for a grating
lobe is z = 1, i.e., 2π sin θa = ±2π, or θa = ±90◦. In (3.33), the condition that
−1 ≤ sin θa ≤ 1 imposes a constraint on m that can be used to determine the
number of grating lobes. For the broadside case the above constraint implies that
the number of grating lobes = 2[d/λ], where [d/λ] denotes the integer value of
d/λ.

d/λ No. of grating lobes sin θa θa

1 2 ±1 ± 90◦

2 4 ±1/2,±1 ±30◦, ±90◦

4 8 ±1/4,±1/2,±3/4,±1 ±14.5◦, ±30◦, ±48.6◦, ±90◦

Note that the grating lobes are not inter-element in angle but are inter-element in
(ks)y. BProblem E.9

BEx 2 4

3.2. Linear array, beamsteered

3.2.1. Concept.
Suppose it is necessary to receive a signal from some direction (say, θ) other than

broadside, and that it is not possible to rotate the array physically. A plane wave
would arrive at the receivers at different times, as shown in Figure 3.9; by delaying
the output of each receiver appropriately before adding we can compensate for
these differences13. The process is called beamsteering and θ is the beamsteered
direction.

For narrow-band signals, the time delays are equivalent to phase delays. Thus,
rather than delay each receiver output, we could multiply it by a phase factor prior
to summing. This approach to beamforming is often called phase shift beamform-
ing.14

13As before, we also normalise by multiplying by 1/K.
14Radar with arrays capable of being processed in this way are called phased array radars.
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FIGURE 3.9. Beamsteering – linear array

The beamformer output, y(θ, t), is given by

y(θ, t) =
1
K

K∑
j=1

xj(t) exp
(
−i2π(j − 1)

d

λ
sin θ

)
=

1
K
vH(θ)x(t) (3.35)

BEx 2 5–2 6

3.2.2. Expression for the beam pattern.
When beamsteering in direction θ and with a signal source incident upon the array
from direction θs, the output of the array is phase-shifted in one direction by the
propagation delay (corresponding to θs) and in some other direction by the signal
processing phase delays (corresponding to θ) introduced. Thus the complex beam-
former output, denoted by y(θ, θs, t), describes the output, at time t, of a beam
steered in direction θ to a plane wave incident on the array from direction θs.

The vector of receiver outputs, x(t) for a plane wave incident from direction θs is
given by

x(t) = s(t)v(θs)

which implies that y(θ, θs, t) =
1
K

s(t)vH(θ)v(θs) (3.36)

Explicitly the complex beamformer output is

y(θ, θs, t) =
1
K

s(t)
K∑

j=1

exp
(

i2π(j − 1)d
λ

sin θs

)

× exp
(
− i2π(j − 1)d

λ
sin θ

)
=

1
K

s(t)
K∑

j=1

exp
[
i2π(j − 1)d

λ
(sin θs − sin θ)

]
. (3.37)
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FIGURE 3.10. Beam pattern of unform linear array of 15 receivers, beam-
steered at 45◦. d/λ = 0.5.

The (normalised) beam pattern is defined as before to be

P (θ, θs) =
|y(θ, θs, t)|2

|y(θ, θ, t)|2
. (3.38)

which, after a manipulation similar to that in Section 3.1.2, reduces to

P (θ, θs) =
1

K2

(
sin
[

Kπd
λ (sin θs − sin θ)

]
sin
[

πd
λ (sin θs − sin θ)

] )2

. (3.39)

An example is shown plotted in Figure 3.10 for d = λ/2 and θ = π/4.

The right and left 3-dB points are given by:

sin θR = sin θ +
0.443λ

Kd

and sin θL = sin θ − 0.443λ

Kd
. (3.40)

θR increases with θ; there is no solution for θR beyond

sin θ +
0.443λ

Kd
= 1.

Similarly, there is no solution for θL beyond 15

sin θ − 0.443λ

Kd
= −1.

15These are known as the ”scan limits”[40, p.56], [11, p.125].
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FIGURE 3.11. Illustrating grating lobes. Beam pattern of unform linear
array of 15 receivers, steered at endfire. d/λ = 0.5

Within these bounds, the half-power bandwidth is given by

Bandwidth = θR − θL

' arcsin
(

sin θ +
0.443λ

Kd

)
− arcsin

(
sin θ − 0.443λ

Kd

)
. (3.41)

When θ = ±π/2 we have the so-called endfire case. The beam pattern for d/λ =
0.5 is shown plotted in Figure 3.11. Note that it has two main lobes – a main beam
and a grating lobe – and is symmetrical about θs = 0.

The 3-dB point is given by

θR ' arcsin
(
1− 0.443

λ

Kd

)
(3.42)

Beamwidth ' π − 2 arcsin
(
1− 0.443

λ

Kd

)
. (3.43)

The bandwidth between 3-dB points is plotted in Figure 3.2.2 against Kd/λ for
several values of θ.
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FIGURE 3.12. Beamwidth vs Kd/λ for various steering angles θ

Figure 3.13 shows another endfire beam, with d = λ/4. This beam pattern has a
single main lobe that is broader than that of the array steered at broadside (shown
in Figure 3.11).

Note that, as the beam is steered away from broadside, the beamwidth increases.
This can be explained physically as due to a reduction in the effective size of the
aperture.

3.2.3. Grating lobes (steered beams).
The general condition for grating lobes for a signal arriving from direction θa, is as
before

z = exp
(

i2πd

λ
(sin θa − sin θ)

)
= 1 (3.44)

or16

2πd

λ
sin θa =

2πd

λ
sin θ − 2mπ, m 6= 0. (3.45)

As in the broadside case, m is constrained by the requirement that

−1 ≤ sin θa ≤ 1

⇒ −d

λ
(1 + sin θ) ≤ m ≤ d

λ
(1− sin θ). (3.46)

16When m = 0, θa = θ giving the main beam, not a grating lobe.
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FIGURE 3.13. Beam pattern of unform linear array of 15 receivers steered
at endfire. d/λ = 0.25

Now consider the case in which θ = π/2, i.e, the endfire case. (3.45) becomes
d

λ
sin θa =

d

λ
+ m, m 6= 0 (3.47)

or sin θa = 1 +
mλ

d
(3.48)

⇒ −2d

λ
≤ m < 0. (3.49)

d/λ No. of grating lobes sin θa θa

1/2 1 −1 −90◦

1 2 0,−1 0◦,−90◦

3/2 3 ±1/3,−1 ±19.5◦,−90◦

2 4 −1,±1/2, 0 −90◦,±30◦, 0◦

The grating lobes for the endfire case are shown plotted in Figure 3.14.
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FIGURE 3.14. Illustrating grating lobes for unform linear array of 15 re-
ceivers steered at endfire.

BEx 2 7–2 9
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3.3. General array configuration

3.3.1. Expression for the beam pattern.
By introducing the appropriate time delays to compensate for the different times
of arrival, the concept of beamsteering can be extended to an array of arbitrary
shape in two or three dimensions as illustrated in Figure 3.15. Again for the single-
frequency plane wave considered in this Chapter the time delays can be imple-
mented as phase shifts.

Array of
receivers

Time
delays

W
av

ef
ro

nt

θs

+

ys(θ, θs, t)

×
1/K

×
1/K

×
1/K

×
1/K

FIGURE 3.15. Beamsteering – general array geometry

To determine the values of the delays, draw an imaginary plane normal to the beam-
steered direction. The actual position of the plane is arbitrary. The propagation
distance to the j th receiver, dj , is given by the distance from the receiver to that
plane.17

For a beamsteered direction (θ, φ) in azimuth and elevation, the phase delays are
given by kT uj , where

k =
2π

λ

cos θ sinφ
sin θ sinφ

cos φ

 , (3.50)

uj =

xj

yj

zj

 , (3.51)

and (xj , yj , zj) are the coordinates of the j th receiver.18

17Note that any plane normal to the beamsteered direction can be used. If the delays are imple-
mented using some form of storage medium (e.g., a buffer storage or some delay line) it is econom-
ical to use the plane which minimises the storage requirements – i.e., the plane through the receiver
furthest from the signal source.

18The reader should not confuse the x-coordinate, xj , with the output of the receiver, xj(t).
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The output beam, y(k, t), is then given by

y(k, t) =
1
K

K∑
j=1

xj(t) exp
(
−ikT uj

)
=

1
K
vH(k)x(t) (3.52)

and the steering vector by

v(k) =


exp

(
ikT u1

)
exp

(
ikT u2

)
...

exp
(
ikT uK

)
 . (3.53)

An expression for the beam pattern can readily be derived by considering the output
of the beamformer when the input signal is a plane wave from a direction specified
by ks. In this case the vector of receiver outputs is given by

x(t) = s(t)v(ks).

Substituting this in (3.52), the complex beamformer output is then given by

y(k, ks, t) =
1
K

s(t)vH(k)v(ks)

=
1
K

s(t)
K∑

j=1

exp
(
− ikT uj

)
exp

(
ikT

s uj

)
=

1
K

s(t)
K∑

j=1

exp
(
i
(
ks − k

)T
uj

)
(3.54)

and hence the beam pattern is

P (k, ks) =
|y(k, ks, t)|2

|y(k, k, t)|2

=
|vH(k)v(ks)|2

K2

=

∣∣∣∑K
j=1 exp

{
i
(
ks − k

)T
uj

}∣∣∣2
K2

(3.55)
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3.4. Beam pattern of an array in 3 dimensions

FIGURE 3.16. Beam pattern in
3 dimensions FIGURE 3.17. Horizontal beam pat-

tern (2 dimensions)
It was mentioned earlier that the beam pattern, being a function of the horizontal
(θs) and vertical (φs) angles of arrival of the far-field signal, is a 3-dimensional
surface.

An example of this is shown in Figure 3.16. The horizontal beam patterns we
have been considering thus far are horizontal sections through the origin (see Fig-
ure 3.17). BEx 2 10–2 12

BProblem E.10

BProblem E.11

3.5. Overview

In this chapter the following concepts have been introduced

• conventional beamforming,
• two- and three-dimensional beam patterns,
• beamwidth,
• sidelobes,
• beamsteering for arrays of any configuration,
• grating lobes,

with illumination by example. The reader should now be able to calculate beam
patterns and have some understanding of the dependence of the beam pattern on
the operating frequency and beamsteered direction.
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Summary

(1) Conventional beamformers delay or phase-shift receiver signals to compensate
for propagation delays before summing them.

(2) Linear arrays are inherently unable to distinguish between signals arriving from a
cone centred on the array axis.

(3) For a uniform linear array, for large K,

Beamwidth ∼ 50
aperture in wavelengths

degrees

Nulls occur at θn = sin−1

(
n

aperture in wavelengths

)

Peaks of sidelobes take values of
4

(2n − 1)2π2

which are independent of the number of receivers and the inter-element spacing.

(4) With suitable processing, beams may be steered in any direction, for arrays of any
geometry.

(5) When the inter-element spacing is larger than the wavelength, spatial aliasing
occurs which generates grating lobes.

(6) For a uniform linear array steered broadside, the number of grating lobes
= 2[d/λ].

(7) Grating lobes are not equally spaced in angle.



CHAPTER 4

SHAPING THE BEAM PATTERN

4.1. Introduction

The beam patterns in Chapter 3 exhibit substantial sidelobes. Any unwanted signal
in the direction of one of these sidelobes will interfere with the wanted signal. We
are thus motivated to seek means of reducing the level of sidelobes. We would also
like to have some control over the width of the main lobe of the beam pattern.

Many techniques have been devised to modify the beam pattern. In the following
sections we address shading and null-steering and briefly mention superdirectiv-
ity.

Recall from (3.52) that, for phase-shift beamforming,

y(k, t) =
1
K
vH(k)x(t)

and for a far-field signal this reduces to

y(k, ks, t) =
1
K

s(t)vH(k)v(ks).

We see that the conventional beamformer multiplies the receiver outputs s(t)vj(ks)
by a factor 1/Kv∗j (k) = 1/K exp(−ikT uj) before summing them.

In what follows, instead of using the conventional beamsteering vector v(k)/K,
we use a generalised weighting vector w

w =


w1

w2
...

wK

 (4.1)

in order that the beam pattern might have certain desirable properties.

4.2. Shading

4.2.1. Introduction.

49
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FIGURE 4.1. Illustrating shading for a unform linear array

One simple way of improving the beam pattern is to phase-shift the receiver out-
puts by an amount ϕj , where ϕ = −ikT uj as discussed in Chapter 3, and then
multiply by some real factor αj , j = 1, . . . ,K before summation. This is illus-
trated in Figure 4.1 for a unform linear array. Typically the weighting factors for
the receivers at the ends of the array, α1 and αK would be the least, and weights
would be larger for receivers nearer the centre. The technique is called shading1.
It can be used for arrays of any configuration but the theory is most developed for
linear arrays of equally spaced receivers.

Instead of beamforming using the beamsteering vector for the conventional beam-
former, v(k), we use a general weighting vector w = [wj ], where

wj = αjvj(k).

4.2.2. Linear arrays.
Several popular shading schemes, with corresponding beam patterns, are shown in
Table 1 and in Figures 4.2 and 4.3. In each case, the magnitudes of the weights are
shown plotted alongside the beam pattern.2

1A similar technique is employed to improve the estimation of spectra from time series.
2Many of the popular shading schemes used in spectral analysis – Hann, Bartlett and Blackman,

for example – reduce the weights at the extremes of the set of time samples to zero; the observation
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FIGURE 4.2. Beam patterns and weights with Triangular,
Blackman-Harris and Gauss shading

time is effectively reduced because the first and last samples are discarded. With time sampling this
is usually not of much consequence but with spatial sampling the loss of two receivers is significant.
Here we modify those shading schemes by (notionally) increasing the number of receivers by two
before applying the shading formula.
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TABLE 1. Shading function w(%)

Type Function

Boxcar w(%) = 1

Blackman-Harris
w(%) = 0.35875 + 0.48829 cos(2π%/D)

+0.14128 cos(4π%/D) + 0.01168 cos(6π%/D).

Gauss w(%) = exp
{
−
(
α′%(K − 1)/(2KD)

)2}
Hamming w(%) = .54 + .46 cos(%)

Hanning w(%) = .5
(
1 + cos(%(K − 1)/(K + 1))

)
Kaiser w(%) = I0

(
β′
√

1− (2%/D)2
)
/I0(β′)

Triangular w(%) = 1−
{(

2%(K − 1))/(D(K + 1)
)}

% = distance from the centre of the array
D = 2 max(%)

α′ and β′ adjust the trade-off between beamwidth and sidelobe levels

In each of these beam patterns, the sidelobes have been reduced (compared to the
unshaded conventional beamformer) but at the cost of increasing the width of the
main lobe. By varying the shading, we can trade between sidelobe level and main
lobe width.

This notion motivated the development of a processor to give a beam pattern in
which each sidelobe has the same peak value. This Chebyshev 3 processor is il-
lustrated in Figure 4.4 for three different values of the peak sidelobe level; in each
case, the beam pattern of the conventional beamformer (i.e., with no shading 4)
is also displayed. The trade-off between beamwidth and sidelobe level is evident.
Computation of the shading coefficients is readily implemented using standard sig-
nal processing software packages.

3Also called Dolph-Chebyshev shading.
4When there is no shading–all the weights w(j) = 1– the processor is also known as boxcar

shading.
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FIGURE 4.3. Beam patterns and weights with Hamming, Han-
ning and Kaiser shading
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FIGURE 4.4. Dolph-Chebyshev shading and weights with side-
lobes at −20, −30 and −40 dB

4.2.3. Planar arrays.
For planar arrays, shading is related to the radial distance of the receiver from the
centre of the array. Four examples – using Gauss, Kaiser, Hamming and Hanning
shading – are given in Figure 4.5
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FIGURE 4.5. 7 × 7 regular rectangular array with x-spacing =
y-spacing = 0.35λ. Hanning, Hamming, Kaiser and Gauss shad-
ing

BEx 3 1–3 2

4.3. Null-steering

Shading techniques described previously reduce sidelobes in general and are effec-
tive where there are many interfering sources distributed around the array. How-
ever, very often one is faced with interference, whether accidental or deliberate,
from discrete far-field sources. It is then desirable to generate a beam pattern with
nulls in the directions of the interfering sources5.

5 The concept can readily be extended to sources that are close by—i.e., when the interference
arrives in a wavefront that is not plane.
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4.3.1. Single null.
We begin by considering a beamformer
which generates a single null and later
see how we can generate many nulls.
Let w be the vector of weights for the
beamformer (which we wish to derive),
v(k) the steering vector corresponding
to the direction k of the desired signal
and v(ki) that corresponding to the in-
terference direction ki. As usual, we
want the summed output of the beam-
former to be unity in the direction of the
wanted signal and zero in the direction
(ki) of the interference.

ki

k

Dire
cti

on
of

int
erf

ere
nc

e

Direction of wanted signal

In other words, we need simultaneously to satisfy the following two equations:

wHv(k) = 1 (4.2)

and wHv(ki) = 0. (4.3)

We can combine (4.2) and (4.3) into a single equation:[
vH(k)w

vH(ki)w

]
=

[
vH(k)

vH(ki)

]
w =

[1
0

]
(4.4)

Let us define the (2×K) matrix

A =

[
vH(k)

vH(ki)

]
= [v(k) v(ki)]

H . (4.5)

Substituting into (4.4) we have

Aw =
[
1
0

]
. (4.6)

This represents two equations with K unknowns. For K > 2 there is no unique
solution.6 Let us consider one very specific solution, where the weight vector is a
combination of the signal and interference vectors:

w = p1v(k) + p2v(ki) = AH

[p1

p2

]
. (4.7)

Pre-multiplying by A and applying the constraint (4.6), we have

6Except for the special case in which A is of rank 2—i.e., it has only two non-zero eigenvalues.
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Aw = AAH

[ p1

p2

]
=
[ 1

0

]
. (4.8)

Note that

AAH =

[
vH(k)v(k) vH(k)v(ki)

vH(ki)v(k) vH(ki)v(ki)

]
(4.9)

=

[
K vH(k)v(ki)

vH(ki)v(k) K

]

and hence, if the inverse exists,[p1

p2

]
=
(
AAH

)−1
[1
0

]
. (4.10)

Substituting (4.10) in (4.7) we obtain 7

w = AH

[p1

p2

]
= AH

(
AAH

)−1
[
1
0

]
, A†

[
1
0

]
. (4.11)

It is obvious from direct substitution that w satisfies (4.4) and (4.6). This particular
solution of (4.6) is called the minimum-norm solution.

We can gain a little insight by calculating (AAH)−1. After a little manipulation
of (4.10) we obtain

[p1

p2

]
=
(
AAH

)−1

[1
0

]
=

K

K2 − |vH(k)v(ki)|2

 1

−
{
vH(ki)v(k)

K

} .

(4.12)

7There are infinitely many solutions to (4.4). The general solution may be written as

w = A−
[
1

0

]
,

where A− denotes a so-called generalised inverse or g-inverse of the matrix A. Any g-inverse
will satisfy (4.4). A† is called the Moore-Penrose generalised inverse, or pseudo-inverse of A and
is the one which minimises the Euclidean norm

(
wH w =

∑K
j=1 |wj |2

)
. In one sense, it gives

the null-steering processor that is least sensitive to noise and errors in the beamforming. A general
solution for w is w = A†

[
1
0

]
+

(
I −A†A

)
z , where z is arbitrary. When z = 0

∼
we have

the minimum-norm solution.
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Note that the second entry, p2, is proportional to the conventional beamformer
output in the direction ki. In effect we are subtracting the signal entering via a
sidelobe, and then renormalising the beamformer response.

The beam pattern of an array with a single steered null is illustrated in Figure 4.6.
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FIGURE 4.6. Beam pattern of array with single steered null

BProblem E.12

4.3.2. L < K nulls.
It is not difficult to extend these results to generate a beam pattern with L < K
nulls, by defining the

(
(L + 1)×K

)
matrix

A =


vH(k)
vH(k1)

...
vH(kL)

 (4.13)

and solving Aw = δ
(L+1)
1 , (4.14)

where δ (L+1)
1 is the

(
(L + 1)× 1

)
vector:

δ
(L+1)
1 =

1
0
...
0

 . (4.15)
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FIGURE 4.7. Beam pattern of circular array with nine steered nulls

When
(
AAH

)
is non-singular, the minimum-norm solution is

w = AH
(
AAH

)−1
δ

(L+1)
1 . (4.16)

The limit is reached when L = K − 1; if A is non-singular, there is then a unique
solution:

w = A−1δ
(K)
1 . (4.17)

Figure 4.7 shows the beam pattern of a 10-element circular array of receivers
spaced 0.4λ apart, with both conventional beamforming and with 9 steered nulls. It
is apparent that with null-steering the beam pattern is significantly improved over
that of the conventional beamformer.

However, this technique must be applied judiciously. Figure 4.8 shows the beam
pattern of an array with two nulls placed too close to the beamsteered direction.
The width of the main lobe is made smaller compared to that of the conventional
beamformer, but at the cost of an increase in the levels of all of the sidelobes. BProblem E.13

BEx 3 3–3 4
4.4. Superdirectivity

With conventional beamforming, the width of the beam between half-power points
is given approximately by

beamwidth ∼= 0.88 λ/aperture radians, (4.18)
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FIGURE 4.8. Beam pattern of linear array with two steered nulls

where aperture is the width of the aperture of the array and λ is the wavelength. At
low frequencies, λ is large and so the beamwidth is as well.

In previous sections we have been concerned with suppressing sidelobes. It is also
possible to process receiver outputs in order to make the beamwidth narrower than
that from conventional beamforming.

Beamformers that give narrower beams than does the conventional processor are
called superdirective.

Figure 4.9 shows the beam pattern of a so-called minimum bias beamformer[9]
for a linear array of 15 elements, steered broadside and with elements spaced λ/4
apart. Also shown for comparison is the beam pattern for a conventional beam-
former. Note that the beamwidth of the minimum bias beamformer is narrower
than that of the conventional. Not unexpectedly, there is a price to pay for any of
these superdirective processors: the processing is more complex and the magnitude
of the weights tends to be large. In the particular case shown in Figure 4.9, the ratio
of the absolute value of the maximum to minimum weight is ∼= 260. The result is
that the processor is more sensitive than the conventional beamformer to noise and
any imperfections in the processing or in the assumed model.

In some cases, narrowing the main lobe generates higher sidelobes. As a general
rule, the higher the performance demanded, the more sensitive is the processor.

There will be further examples of superdirectivity in later chapters.
BEx 3 5–3 6
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FIGURE 4.9. Illustrating superdirectivity

4.5. Overview

In this chapter we have introduced several techniques for using weights to shape
the beam pattern : shading, null-steering and superdirectivity. Shading reduces the
level of sidelobes, null-steering places up to K − 1 nulls in the beam pattern, and
superdirectivity reduces the width of the main lobe.
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Summary

(1) Shading is a technique which multiplies the delayed receiver outputs by real
weights in order to suppress sidelobes. In general, the magnitude of weights is
larger for receivers near the centre of the array than for those at the periphery.

(2) There are many shading schemes available and expressions have been given for
some popular ones.

(3) Chebyshev shading gives a beampattern with all sidelobe peaks of the same
amplitude.

(4) With shading, the penalty for low sidelobes is an increase in the beamwidth.

(5) Interfering signals from discrete directions can be cancelled completely (in theory
at least) by null-steering. For an array of K receivers up to K − 1 nulls can be
steered.

(6) At low frequencies, where the beampattern for conventional beamformers is broad,
it is possible to get narrower beamwidths by superdirective beamforming.



CHAPTER 5

ARRAY GEOMETRY DESIGN

5.1. Introduction

The geometry of the array plays a dominant part in the performance of the system.
For example, the beam pattern is determined entirely by the geometry and the
wavelength of the signal. We have seen how a linear array is unable inherently to
distinguish between signals arriving from anywhere within a cone centred on the
axis of the array.

In this Chapter we explore some of the effects arising from the geometry of the
array – some desirable and others not so.

It must be stressed that the design of the geometry is inevitably a compromise
between many factors – such as physical size, mechanical construction, cost, com-
puting load, beamwidth and sidelobe levels. These frequently override signal pro-
cessing criteria and force the adoption of a less than optimal array configuration.

5.2. Array symmetry

Here the effect of symmetry on the beam pattern of an array is considered qualita-
tively. It has already been noted that a linear array – a highly symmetrical structure
– has a beam pattern with two main lobes symmetrical about the array axis, as il-
lustrated in Figure 3.2.

If an array has a high degree of sym-
metry – for example, if it is triangular
as illustrated in Figure 5.1 – then it will
tend to have higher sidelobes in direc-
tions corresponding to the ambiguous
lobes of each of the sides. This is illus-
trated in Figure 5.2 which shows the
beam patterns of three sub-arrays (i.e.,
of each of the three sides of the array
of Figure 5.1), and of the whole array
of 30 receivers.

FIGURE 5.1. Example of a
highly symmetrical array

63
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FIGURE 5.2. Illustrating how the ambiguous lobes of sub-arrays
affect the beam pattern

The spacing between adjacent receivers is λ/2 and the beamsteered direction is 0◦.
The sub-arrays have spurious lobes at 180◦ and ±60◦ which result in significant
sidelobes in the beam pattern of the whole array. Qualitatively the height of these
sidelobes would be of the order of

(
1
3

)2 or approximately -10dB.

It must be stressed that the beam pattern for the whole array is not the sum of
the beam patterns of the individual sub-arrays. Each sub-array can be considered
separately but to obtain the output of the whole array the sub-array outputs with
appropriate phase delays should be added. Nevertheless, if the beam pattern of
a sub-array has a large unwanted sidelobe, it indicates a predisposition to there
being a significant sidelobe in the beam pattern of the whole array. As a general
rule, it is desirable to avoid symmetry in array geometry (an extreme example is
to spread the receivers randomly), but practical considerations frequently override
this desire. BProblem E.14

BEx 4 1– 4 4
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5.3. Beam pattern of an array of directional receivers

Thus far it has been assumed that each
receiver is omnidirectional – i.e., that it
is by itself insensitive to the direction of
arrival of any signal. In practice this is
often not so: for example, a vertical ra-
dio dipole has a response that varies with
angle in the vertical plane.

−
+

−
+

−
+

−
+· · ·

FIGURE 5.3. Array of
horizontal dipoles

Consider the beam pattern of an array of identical directional receivers each ori-
ented in the same direction, as illustrated in the sketch. Let A rec

s (ks) be the com-
plex response of each receiver to a signal of wavenumber ks. The vector of re-
ceiver outputs when a plane wave is incident upon the array from direction ks is
then given by

x(t) = s(t)Arec
s (ks)v(ks) (5.1)

Then the output of a beamsteered in direction k is then given by

y(t) =
1
K

s(t)Arec
s (ks)vH(k)v(ks) (5.2)

The (normalised) beam pattern of the directional array is therefore given by

P dir(k, ks) =
|vH(k)v(ks)|2

K2

|Arec
s (ks)|2

|Arec
s (k)|2

. (5.3)

and so

P dir(k, ks) = P rec
s (k, ks)P omni

s (k, ks). (5.4)

This is the very useful principle of beam pattern multiplication.

The beam pattern of an array of identical directional receivers is the prod-
uct of the beam pattern of an array of omnidirectional receivers, with the
same geometry, and the beam pattern of the receivers themselves.

There are many instances where this principle is used. In radio astronomy, arrays
of large identical dishes are used, as sketched in Figure 5.4; each dish has the
same beam pattern and is pointed in the same direction. The spacing of the dishes
is deliberately made large so as to obtain very high resolution. If omnidirectional
receivers were used there would be grating lobes. However, the beam pattern of the
dishes serves to suppress the grating lobes. This effect is illustrated in Figure 5.5
for a linear array of 15 inter-element dipoles steered at broadside, with each dipole
oriented so that its maximum response is aligned with the beamsteered direction
(but note that in radio astronomy the beamwidths would be much narrower than
shown.)
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FIGURE 5.4. Array of dishes
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FIGURE 5.5. Beam pattern of linear array of dipoles

Main Beamformer

Receivers

Subarray
Beamformers

FIGURE 5.6. Partitioning into sub-arrays

In HF radar, very large linear arrays are used. To reduce the cost of beamforming, it
is possible to partition the array into small identical sub-arrays and to form beams
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for each of them. Each sub-array may then be thought of as a separate directional
receiver.

A similar approach is also used in sonar which utilises towed arrays of hydrophones.

FIGURE 5.7. Towed array of groups of hydrophones
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FIGURE 5.8. Suppressing grating lobes using receiver directivity

In this case, the hydrophones are often arranged in groups and their outputs added
to reduce the acoustic flow noise. Each group has a broadside beam pattern (albeit
usually rather broad). Beamforming is then done using each group as if it were a
single (directional) receiver. BProblem E.15

BProblem E.16

BEx 4 5–4 6
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FIGURE 5.9. Beam pattern of circular arrays – sparse and filled

5.4. Sparse arrays

Thus far we have been considering arrays with receivers that are distributed to fill
evenly the space between the extremes of the array. Such filled arrays give a beam
pattern with relatively narrow main lobe and low sidelobes.

The width of the main lobe is determined primarily by the array aperture of the
array (its spatial extent) 1 . However, the computational cost of beamforming varies
approximately as the cube of the number of receivers. Thus there is naturally inter-
est in the search for arrays with the same aperture but with fewer receivers. Such
sparse arrays have been extensively studied.

1Let the shortest spacing between receivers be d, the distance between receivers at the extremes
of the array be D, and the wavelength λ; then the aperture – in units of wavelength – is normally
taken to be (D + d)/λ.
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Figure 5.9 shows the horizontal beam pattern P (0, θ) of a plane array with 15
receivers arranged uniformly on a circle of radius 1.2λ and with adjacent elements
spaced close to λ/2 apart. The beamsteered direction θ is on a radial line in the
x-direction.

Note that the level of sidelobes is much higher than for the linear array. This is
because the array is relatively sparse (i.e., the number of receivers within the area
or volume spanned by the array is relatively small); there are no receivers within
the circle.

Also in Figure 5.9 is the beam pattern of the same array filled with additional
elements arranged in concentric circles, with radii of reduced in steps of 0.25λ. It
is evident that the beam pattern is much improved, but at the cost of a three-fold
increase in the number of elements. The beam pattern of such circular arrays is
substantially independent of the beamsteered direction. BEx 4 7–4 8

5.5. Redundant and non-redundant linear arrays

An array takes spatial samples of the incom-
ing wave field. Consider the regular linear
array of K receivers separated by a distance
d, and a signal arriving as a plane wavefront.
This samples the wave field at regular inter-
vals: any two receivers separated by the same
distance will receive the incoming signal with
the same phase difference a. Thus there is one
sample at a spacing of (K − 1)d, two at a
spacing of (K − 2)d, ... , (K − 1) samples
at a spacing of d and K samples at a spacing
of zero. In a homogeneous noise field (and
in the absence of receiver noise) only a sin-
gle sample would suffice. A filled array, then,
might take many redundant spatial samples.

aA parameter of great importance is the correlation be-
tween the outputs of the receivers. The average output
of the sum-and-square beamformer, for example, can
be expressed as the weighted sum of these correlation
functions. However, a proper discussion of this has to
await the introduction of random variables in Chapter
7.

FIGURE
5.10. Filled
linear array
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The question could be asked whether a linear
array can be designed such that there are no
redundant samples. The answer is that, for
K ≤ 4 there is, as illustrated in Figure 5.11,
where the successive spacings are 1, 3 and 2.
With this array, every possible spacing, from
d to 6d, is exhibited once and only once by
the array. This is a so-called perfect arraya.

aThe term ‘perfect’ is loose: it only means that all spac-
ings – except the zero spacing – occur only once; other-
wise, these arrays have no particularly attractive prop-
erties.

d

3d

2d

4d

5d

6d

FIGURE
5.11. Perfect
sparse lin-
ear array

Unfortunately for K > 4 it is only possible
to find only

• non-redundant arrays, where most
but not all spacings appear only
once, and the number of gaps is
minimised, or

• redundant arrays, where every
spacing appears at least once and
in some cases more than once, and
the number of redundant spacings is
minimised.

Figure 5.12 shows a non-redundant array of
5 receivers, with every spacing from d to 11d
(except 6d) appearing once and only once.

5d 

2d 

3d 

d 

FIGURE
5.12. Non-
redundant
sparse
linear array

Redundant Non-redundant
K Aperture Spacings K Aperture Spacings
3 4 •1•2• 3 4 •1•2•
4 7 •1•3•2• 4 7 •1•3•2•
5 10 •1•3•3•2• 5 12 •1•3•5•2•
6 14 •1•5•3•2•2• 6 18 •1•3•6•2•5•
7 18 •1•3•6•2•3•2• 7 26 •1•3•6•8•5•2•
8 24 •1•3•6•6•2•3•2• 8 35 •1•3•5• 6•7•10•2•
9 30 •1•3•6•6•6•2•3•2• 9 45 •1•4•7•13•2•8•6•3•
10 37 •1•2•3•7•7•7•4•4•1• 10 56 •1•5•4•13•3•8•7•12•2•

Spacings for redundant and non-redundant arrays
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Figure 5.13 shows a redundant array of 5 re-
ceivers, with every spacing from d to 9d ap-
pearing at least once (3d appears twice).

2d 

3d 

3d 

d 

FIGURE
5.13. Redundant
sparse lin-
ear array

The beam patterns of a 10-element linear non-redundant array and a 55-element
linear filled array are shown in Figure 5.14. Since the apertures of the two arrays
are the same, so are the widths of their main lobes. However, the properties of their
sidelobes are markedly different: those for the non-redundant array (like other
sparse arrays) tend to take an average value of 10 log10 K.

Similar results comparing redundant and filled arrays are shown in Figure 5.14
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FIGURE 5.14. Beam pattern of non-redundant 10-element linear
array compared with a filled linear array with the same aperture
(55 receivers)

BEx 4 9–4 12
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FIGURE 5.15. Beam pattern of redundant 10-element linear array
compared with a filled linear array with the same aperture (36 re-
ceivers)

5.6. Co-array

A convenient way of visualising the
efficiency of the spatial sampling by
an array is to plot the histogram of
array separations. This so-called co-
array is shown in Figure 5.16 for a
10-element filled linear array.

FIGURE 5.16. Co-
array for 10-element
filled linear array
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The co-array for a redundant 5-
element array is shown in Fig-
ure 5.17. For K receivers there are
of course always K samples at the
origin (i.e., a spacing of 0), but apart
from sampling twice for a spacing of
3, this array samples all other spacing
only once. FIGURE 5.17. Co-

array for 5-element
redundant array

For planar arrays the co-array is a two-dimensional plot. It is easier to design
planar arrays without redundancy than linear arrays. A special case is the so-called
Haubrich array shown in Figure 5.18 with its co-array in Figure 5.19. The point at
the origin, with a multiplicity of 6, has been as a small point in red for convenience.
The even spread of the other points, and the absence of any multiple samples, shows
that this geometry provides efficient sampling.

FIGURE
5.18. Haubrich
array

FIGURE 5.19. Co-
array for Haubrich
array
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The co-array for a circular array
with eight receivers is shown in Fig-
ure 5.20: each point where the spa-
tial wave field is sampled appears as
a dot, with the diameter of the dot
indicating the multiplicity (i.e., how
many times that point in space has
been sampled).

FIGURE 5.20. Co-
array for 8-element
circular array

Figure 5.21 shows the result for a
nine-element circular array, which is
quite different from the preceding
one for eight elements. Here the sam-
pling is quite efficient, with no points
sampled more than once (except, of
course, the origin).

FIGURE 5.21. Co-
array for 9-element
circular array

BEx 4 13–4 14

5.7. Random arrays

There has been experimentation with random arrays – in which the positions of the
receivers are placed randomly but with some constraints. For example, one could
require that all the receivers have to lie within a circle of some specified diameter,
and that no pair of receivers are closer than some minimum spacing.

Like all sparse arrays, random arrays tend to have the same beamwidth as a filled
array occupying the same overall length, area or volume, but exhibit sidelobes
higher than those of the filled array. BEx 4 15–4 16

5.8. Overview

In this chapter the following concepts have been introduced

• effect of array symmetry,
• principle of beam pattern multiplication
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• filled and sparse arrays
• redundant and non-redundant linear arrays
• co-arrays
• random arrays

The reader should have some understanding of the desirable and undesirable as-
pects of array geometry.

Summary

(1) Symmetry in an array can produce high sidelobes.

(2) The beampattern of an array of identical directional receivers is the product of the
beampattern of the array of omnidirectional receivers with the same geometry,
and the beampattern of an individual receiver.

(3) Sparse arrays (including random arrays) tend to have narrower beamwidths and
higher sidelobes than filled arrays of the same physical size.

(4) With more than 4 receivers, it is not possible to design a ‘perfect’ linear array
(i.e., with every possible spacing occurring once and only once).

(5) The co-array allows the efficiency of spatial sampling to be visualised.



CHAPTER 6

STEERING MULTIPLE BEAMS - CONVENTIONAL
PROCESSING

6.1. Introduction

In this chapter processing the ar-
ray receiver outputs to form multiple
beams steered in different directions
is considered. In a field consisting
of a superposition of a number of
plane-wave signals the formation of
multiple beams is obviously essen-
tial. Whilst it is possible to steer
the beam by mechanically rotating
the array this approach is not always
practical or desirable and the mod-
ern preferred approach is to beam-
steer – electronically or numerically
– multiple beams simultaneously as
illustrated in Figure 6.1.

FIGURE 6.1. Overlapping beams from
42-receiver filled circular array

Consider the situation where one or more strong signal sources are incident upon
the array from unknown directions. Forming many beams simultaneously and plot-
ting the power output of the beamformer against the steered direction of these
beams will result in peaks in the directions of the signal sources, thus enabling
the direction of arrival of each signal to be estimated. Such a function is usually
termed the Steered Beamformer Power Output1

As discussed, above beams may be steered sequentially or simultaneously. Scan-
ning some field of view sequentially is easier computationally but leads to a loss in
detection performance and the delay in revisiting a particular direction is a disad-
vantage.

1The reader should be careful to distinguish between the beam pattern and the beamformer out-
put. The beam pattern is the output of the beam for a fixed steering direction as a single source is
moved around the array. It is independent of the environment in which the array is placed. The beam-
former output is the output signal as the beam is steered in different directions. It varies according to
the signals and noise incident on the array.

76
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There are evident practical advantages in the ability to survey all directions si-
multaneously. The penalty is, of course, a manifold increase in the computation
required. The cost is driven primarily by:

• the number of receivers
• the bandwidth of the signal
• the number of beams
• the aperture of the array (which is related to the number of receivers but

also to the geometry of the array).

Very roughly, the computational cost tends to vary as the cube of the number of
receivers.

In practice the following cases often occur:

• the plane waves all have the same frequency, in which case multiple phase
shifted beams using multiple steering vectors are formed;

• the plane waves are modulated by narrowband signals and have carriers of
almost identical frequencies. Beamforming in this case can be achieved
similarly to above or by using frequency domain beamforming; or

• the plane waves have many different frequencies and are best consid-
ered as signals with a broad power spectrum - often termed broadband
sources. Beamforming is achieved in either the frequency domain or the
time domain

In this chapter techniques for forming multiple beams in each of the above cases is
considered. As shall be shown, the beam pattern of the array still has a strong in-
fluence on determining the number of beams required and the system performance
in the presence of multiple signals. BProblem E.17

6.2. Multiple single-frequency signals

In this case there are a number of signal sources, each of identically the same
frequency so that all the signals arriving at the array are coherent. The input to
each receiver output is then a linear superposition of plane waves of a constant
frequency, fc but with different phases due to their different directions of arrival.

A practical example of when this occurs is when there are two or more propagation
paths from the same signal–for example, when there is one direct path from the
source to the array, and a second path reflected from some large fixed object (such
as a building), as illustrated in Figure 6.2. The two arrivals from the same signal
can be fully coherent, but in general will not be in phase.

The output beam of a phase shift beamformer is, from Chapter 3, given by

y(θ, φ, t) =
1
K
vH(θ, φ)x(t). (6.1)
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Signal
source 

Multipath
arrivals
at array 

Reflection
from
large
object 

FIGURE 6.2. Illustrating multiple arrivals

To form multiple beams θ, φ are varied over a set of angles; in practice this will
usually be discrete but in theory can be considered to be continuous. The range
of angles will be determined by the operational use of the array but in general for
surveillance arrays coverage of the full angular region [0 < θ ≤ 2π, 0 < φ ≤ π]
is required. In the following wavevectors, rather than angles, will be used and the
above (6.1) will be written as

y(k, t) =
1
K
vH(k)x(t). (6.2)

To complete the description of the beamformed signal, y(k, t), a representation of
the receiver outputs in terms of the incident signals is required . As an introduction,
consider the situation where there are two plane waves of the same single frequency
fc incident upon the array from angles corresponding to wavevectors k1 and k2.
The output of the jth receiver is given by

xj(t) = s1 exp(i2πfct) exp(i2πkT
1 uj)

+ s2 exp(i2πfct) exp(iϕ) exp(i2πkT
2 uj)

or in vector notation

x(t) = {s1v(k1) + s2 exp(iϕ)v(k2)} exp(i2πfct) (6.3)

Note the scalars s1 and s2 are the magnitudes of each signal incident upon the
array and ϕ is their relative phase. In the example illustrated in Figure 6.2 ϕ is
determined by the difference in path lengths of the direct and reflected signals.
The beamformer output, as a function of the steering angle, k is given by

y(k, t) =
1
K
vH(k)x(t) (6.4)

=
1
K

{
s1v

H(k)v(k1) + s2 exp(iϕ)vH(k)v(k2)
}

exp(i2πfct)

The steered beamformer output power, pconv(k), defined2. by

pconv(k) = lim
T→∞

1
T

∫ T

0
|y(k, t)|2dt

2The subscript conv is used to denote conventional beamforming
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can be shown to reduce to

pconv(k) =
1

K2

(
s2
1

∣∣vH(k)v(k1)
∣∣2 + s2

2

∣∣vH(k)v(k2)
∣∣2

+ 2<
(
s1s

∗
2 exp(iϕ)vH(k)v(k1)vH(k2)v(k)

) )
The first two terms in (6.4) are the beam patterns when the beam is steered in
directions with wavevectors k1 and k2, multiplied by the signal powers s2

1 and s2
2

respectively. Note, however, that the beamformer power output is in general not
simply the sum of the weighted beam patterns because of the presence of the last
term in the above expression representing the interference effects between the two
coherent arrivals.

When the arrival directions are well separated relative to a beamwidth and the two
signals are easily resolvable and the output beam power is, to a good approxima-
tion, the sum of the two beam patterns since the magnitude of

vH(k)v(k1)vH(k2)v(k)

is small. If the main lobes of the two beam patterns overlap, then the effect on
pconv(k) could be either reinforcement or cancellation, depending on the relative
phase ϕ. This effect is particularly important for low grazing angle multipath sig-
nals propagating over the earth’s surface.

If one signal is weak, it can be obscured by the sidelobes of the stronger signal.
If the angular separation is decreased to be comparable with the beamwidth the
signals will no longer be resolvable.

This discussion illustrates the need to control both the array beamwidth and side-
lobe levels as discussed in Chapter 4.

6.3. Multiple narrowband signals

In this section narrowband signals that are not coherent with each other are consid-
ered. The vector of receiver outputs is now given by

x(t) = {s1(t) exp(i2πfc1t)v(k1) + s2(t) exp(i2πfc2t)v(k2)} (6.5)

where the bandwidth of si(t) is small compared its carrier frequency, fci and it is
assumed that the carrier frequencies fc1 and fc2 are close. In this case the output
power of the beamformer can be shown to be given by

pconv(k) =
1

K2

(
σ2

1

∣∣vH(k)v(k1)
∣∣2 + σ2

2

∣∣vH(k)v(k2)
∣∣2 ) (6.6)

where

σ2
i = lim

T→∞

1
T

∫ T

0
|si(t)|2dt

provided

lim
T→∞

1
T

∫ T

0
s1(t)s∗2(t) exp(i2π(fc1 − fc2)dt = 0
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In order for the above to hold either the carrier frequencies need to be slightly
different or the signal waveforms si(t) need to be uncorrelated narrowband random
processes. 3

In this situation, the beamformer output power is simply the sum of the outputs
from the output powers of the individual signals.

In the case of just two uncorrelated signal arrivals, (6.6) becomes

pconv(k) = σ2
1P (k, k1) + σ2

2P (k, k2). (6.7)

The beamformer output power is thus the sum of the two beam patterns, scaled by
the signal powers and the number of receivers squared. The K2 term is the gain in
signal power resulting from the use of beamforming. This result can be generalised
to any number of independent signal arrivals.
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FIGURE 6.3. Steered beamformer output for 3 incident sources

Figure 6.3 illustrates the beamformer power output of a linear array of 15 receivers,
with adjacent receivers spaced half a wavelength apart. There are 3 independent
arrivals, at -45◦, 0◦ and 60◦, and of strength -10dB, 0dB and -6dB respectively.

6.4. Multiple broadband signals—time domain beamforming

Consider the case where the signals incident upon the array have a power spectrum
consisting of both continuous broadband energy and spectral line components.

3A more formal explanation of this principle is given in Chapter 7, which deals with beamform-
ing signals whose waveforms are random processes.
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Such situations will always occur when the elements of the array are wide-band
receivers. Typically these receivers occur in

• acoustics and sonar
• specialised communications and radar applications.

The wide bandwidth of the receiver outputs prevents the use a single phase factor
to represent the propagation delay so alternative approaches to beamforming must
be used. In these cases the more direct approach of physically delaying the re-
ceiver outputs to compensate for the propagation delays across the array aperture
is adopted. The delays can be chosen such that, at each receiver, the output wave-
forms due to a signal from the direction of interest are identical and so can be added
to reinforce the signal of interest. This is the key idea of time delay and sum beam-
forming; it is a direct and intuitive form of coherent addition and is considered in
this section.

6.4.1. Time Delays.
To illustrate, consider a circular array of 8
receivers equally spaced around a circle of
radius r and located in the x-y plane as il-
lustrated in Figure 6.4: For this array each
receiver’s position, uj , is most conveniently
written in terms of polar coordinates as

uj =

[
r cos θj
r sin θj

0

]
, (6.8)

where for such circular arrays

θj = 2(j − 1)π/K.

y

x
θ

1

2

3
4

5

6

7
8

FIGURE 6.4. Circular array geometry

For a plane wave incident upon the array from directions θ and φ = 90◦, the time
delay for the j th receiver relative to the origin is given by

τ ′j(θ) =
r

c
cos(θj − θ). (6.9)

Since negative time delays cannot be implemented in practise we add a bulk delay
T0, such that

τj(θ) = T0 + τ ′j(θ) (6.10)

is always positive. T0 defines the time delay reference plane; a beam steered in
direction θ is formed by delaying the receiver outputs by τj(θ) and then adding
these delayed receiver outputs as illustrated in Figure 6.5.
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FIGURE 6.5. Time Delay and Sum for a Circular Array

This beamformer is called the time delay and sum beamformer. If the beam output
is squared it is often called the “add-squarer”4.

The time series output of such a beamformer can be written as:

y(θ, t) =
1
K

K∑
j=1

x(t− τj(θ)) (6.11)

or in general

y(θ, φ, t) =
1
K

K∑
j=1

x(t− τj(θ, φ)), (6.12)

where

τj(θ, φ) =
xj cos θ sinφ + yj sin θ sinφ + zj cos φ

c
(6.13)

and in the above the arbitrary time T0 has been ignored.

Note the following regarding the time delay and sum beamformer

(a) In general it is desirable to simultaneously form not just one, but a number
of beams (e.g. for sonar arrays with a large number of elements this
number can be in the hundreds or thousands). Digital technology allows
these beams to be formed simultaneously.

(b) Apart from a bulk time delay, the signal waveform characteristics in the
look direction are preserved—this property is particularly important if
the array is being used to beamform transient signals. Note because of the

4In this example we have chosen to perform the scaling after the summation.
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frequency dependence of the beam pattern this is not true for interferences
“leaking” into the steered direction through sidelobes—their waveforms
are distorted.

BProblem E.18

BProblem E.19

BProblem E.20

6.4.2. Time Delay Errors - Digital Beamforming.
In practice the digital receiver outputs are sampled in time and thus the time delay
τj(θ, φ) used the time delay and sum beamformer can only be accurately approx-
imated to within half a sampling interval. Since the actual propagation delays are
continuous this will lead to errors. The errors are termed time quantisation errors
and their effect on the beam pattern is of the form:

(a) General increase in sidelobe structure with a few isolated bumps, or

(b) Maintenance of general sidelobe behaviour with isolated high peaks.

Case (a) corresponds to the situation in which the time quantisation errors are pe-
riodic across the array aperture, whilst (b) corresponds to the situation where the
time quantisation errors are not.

In general beam-pattern degradations result in performance degradations. In most
practical situations, the degradation to array gain in uncorrelated or isotropic noise
fields is minimal as usually the main-lobe response is not significantly degraded.
However high sidelobes in the beam pattern, case (a) above, can significantly de-
grade array performance if there are strong interferences in the directions of these
sidelobes. Similarly an overall increase in sidelobe level, case(b) above, can lead
to poorer performance in the presence of distributed clutter.

Example.

If ∆T is the sampling interval consider the case, for a unform linear array, where
the steering direction, θ, satisfies (d/c) sin θ = T/2 which implies that the rel-
ative propagation delay between receivers separated by a distance 2d is equal to
the sampling interval. Since, without resorting to interpolation schemes, it is not
possible to achieve a relative delay between adjacent receivers of T/2, time quan-
tisation errors will result. This is illustrated below and it can be seen that the time
quantisation errors in this case will be periodic.
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FIGURE 6.6. Delay Errors

Note that odd receivers have the correct relative time delays and similarly for the
even receivers, so the only error is that between the subsets of odd and even re-
ceivers. In such a case the principle of beam-pattern multiplication can be used to
analyse the errors.

Time quantisation errors can be minimised by

(a) Increasing the sampling rate—as a rule of thumb most time delay and
sum beamformers use a sampling frequency about eight times the highest
frequency in the signal.

(b) Use interpolation—this can be efficiently implemented for beamformers
using both polyphase filters and post beamformer interpolation. Even
simple linear interpolation between samples can significantly reduce the
beam-pattern degradation. BProblem E.21

6.5. Multiple broadband signals – frequency domain beamforming

Frequency domain beamforming is an approach where the Fourier transform of
each receiver output is formed and at each frequency the receiver outputs are beam-
formed by phase multiplication. This technique is often used when we need to
spectrum analyse the beam outputs to detect weak narrowband signals buried in
noise and if the number of beams to be formed is greater than the number of re-
ceivers it can be more efficient to Fourier transform the receiver outputs rather than
the beamformer outputs.

Let ỹ(θ, φ, f) denote the continuous Fourier transform of a beam steered in direc-
tion {θ, φ}, i.e.,

ỹ(θ, φ, f) =
∫ ∞

−∞
y(θ, φ, t)e−2πift dt. (6.14)
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Substituting for y(θ, φ, t) from (6.12) results in

ỹ(θ, φ, f) =
1
K

∫ ∞

−∞

K∑
j=1

xj{t− τj(θ, φ)}e−2πift dt. (6.15)

Interchanging the order of integration and summation gives

ỹ(θ, φ, f) =
1
K

K∑
j=1

∫ ∞

−∞
xj{t− τj(θ, φ)}e−2πift dt. (6.16)

However a translation in the time domain corresponds to multiplication by a phase
term in the frequency domain, i.e., if

x̃j(f) =
∫ ∞

−∞
xj(t)e−2πift dt (6.17)

then ∫ ∞

−∞
xj{t− τj(θ, φ)}e−2πift dt = x̃j(f)e−2πifτj(θ,φ). (6.18)

(6.15) becomes

ỹ(θ, φ, f) =
1
K

K∑
j=1

x̃j(f)e−2πifτj(θ,φ). (6.19)

Thus the Fourier transform of y(θ, φ, t) can be expressed as a phase-weighted sum-
mation of the Fourier transformed receiver outputs.

Recall that the steering vector, v(θ, φ, f), is given by

v(θ, φ, f) =


exp(2πifτ1(θ, φ))
exp(2πifτ2(θ, φ))

...
exp(2πifτK(θ, φ))

 . (6.20)

x̃(f), the vector of Fourier transformed receiver outputs, is given by

x̃(f) =

 x̃1(f)
x̃2(f)

...
x̃K(f)

 (6.21)

When forming beams it is convenient to normalise the steering vector by multiply-
ing by 1/K so that the resultant beam pattern takes a value of unity in the beam-
steered direction. With this notation the beam output, ỹ(θ, φ, f) can be written as
the Hermitian product

ỹ(θ, φ, f) =
1
K
vH(θ, φ, f)x̃(f). (6.22)

In practice the continuous Fourier transform is approximated by taking the discrete
Fourier transform of the receiver outputs. If only a few beams are to be formed
then this technique is inefficient as the computational cost in evaluating the Fourier
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transform for each receiver may be prohibitive. However, if the system require-
ments are to form more beams than there are receivers and then to determine the
spectral content of each beam by Fourier transforming then this approach may be
preferred.

For deterministic signals in the frequency domain the output power is given by
|ỹ(θ, φ, f)|2; substituting from (6.22) we have

|ỹ(θ, φ, f)|2 =
1

K2
vH(θ, φ, f)x̃(f)x̃H(f)v(θ, φ, f). (6.23)

The above is an Hermitian form of the matrix x̃(f)x̃H(f). Similar expressions
naturally arise when beamforming signals represented as random processes - see
Chapter 7.

BEx 5 1

6.6. Implementation of frequency domain beamforming

Implementing frequency domain beamforming in practice requires taking the Fourier
transform of the receiver outputs. For sampled data this is commonly implemented
using the fast Fourier transform (FFT) algorithm. The finite length and frequency
resolution of the FFT algorithm can result in errors. In most practical implementa-
tions these errors are negligible and we do not consider them here.

A block diagram for implementing frequency domain beamforming is shown in
Figure 6.7.

FFT

FFT

FFT

×

×

×

Σ

x1(kT )

x2(kT )

xK(kT )

x̃1(f)

x̃2(f)

x̃K(f)

v∗1(θ, φ, f)/K

v∗2(θ, φ, f)/K

v∗K(θ, φ, f)/K

ỹ(θ, φ, f)

FIGURE 6.7. Block diagram for frequency domain beamforming
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6.7. Overview

In this Chapter we have introduced the concept of steering multiple beams simul-
taneously.

Three cases have been considered:

• Multiple coherent single-frequency signals and
• Multiple non-coherent narrowband signals
• Broadband signals

Summary

(1) If the arrival directions of coherent single-frequency signals are well separated
relative to the beamwidth, the output beam power is approximately equal to the
sum of the beam patterns.

(2) When the main lobes of the beam patterns of two or more coherent single-
frequency signals overlap, the output beam power depends critically on relative
phase(s) between them.

(3) In the case of non-coherent signals, the output power is simply the sum of the
individual beam patterns, multiplied by the powers of the arrivals.

(4) Processing of single-frequency and narrowband signals can be implemented using
phase-shift beamforming.

(5) Broadband signals can be processed in the time domain or, using fourier trans-
forms, in the frequency domain.

(6) In time-domain beamforming, consideration needs to be given to time quantisation
errors.



CHAPTER 7

WAVEVECTORS, SPATIAL SAMPLING AND
FILTERING

7.1. Introduction

In Chapter 2 the concept of wavevector was introduced and was shown to be related
to angular coordinates (θ, φ) and wavelength λ by the following relationship:

k =

[
kx
ky
kz

]
=

2π

λ

[
cos θ sinφ
sin θ sin φ

cos φ

]
(7.1)

The wavevector is a very elegant representation and for that reason this chapter is
devoted to its usefulness in beamforming. A unform linear array will be used to
show the analogy between wavevectors and one-dimensional filters. The results
can be extended to more general arrays.

Three main reasons favouring the wavevector approach are briefly considered be-
low.

• The general solution to the wave equation when the propagation speed
is constant across the array aperture is a superposition of plane waves.
These plane waves are most conveniently and compactly described in
terms of their wavevectors.

• The wavevector k and frequency ω are Fourier transforms of the spatial
and temporal variables u and t respectively. This suggests implemen-
tation structures for beamforming that utilise multidimensional Fourier
transforms; these are considered later in this chapter.

• Wavevectors allow the properties of an array to be succinctly quantified
and give insight into their properties.

7.2. Propagating wave fields

Recall that in Chapter 2 the coordinate vector u was defined as:

u =
[x
y
z

]
(7.2)

and the wave field was denoted by f(u, t). Assuming the medium to be locally
homogeneous in the vicinity of the array, the wave field resulting from a single

88
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far-field source, as illustrated in Figure 1.3, can be written as:

f(u, t) = α(ks, ω) exp{i(ωt + kT
s u)}, (7.3)

where α(ks, ω) is the complex amplitude at the origin and |α(ks, ω)|2 is the
power of the plane wave.

It is often possible to model the wave field as a linear superposition of signals
from many far-field sources with different frequency components as illustrated and
discussed in Section 2.4. The resultant wave field is calculated by integrating over
all wavevector components and frequencies and can be represented as

f(u, t) =
1

(2π)4

∫
dω

∫∫∫
α
(
(ks)x, (ks)y, (ks)z, ω

)
(7.4)

× exp{i(ωt + x(ks)x + y(ks)y + z(ks)z)} d(ks)x d(ks)y d(ks)z

=
1

(2π)4

∫
α(ks, ω) exp{i(ωt + kT

s u)} dω dks. (7.5)

(7.5) shows that the space-time field, f(u, t), is related to the complex amplitude,
α(ks, ω), by a four-dimensional Fourier transform, where the three-dimensional
wavevector ks and frequency ω are the natural Fourier coordinates corresponding
to the position vector u and time t, respectively1.

1For plane waves propagating at speed c the values of (ks)x, (ks)y , (ks)z and ω in (7.5) would
be constrained to lie on the multidimensional cone defined by:

(ks)
2
x + (ks)

2
y + (ks)

2
z = ω2/c2.

However, we shall not impose this constraint: in (7.5) the variables of integration will range over
±∞. This may seem in conflict with the idea of propagating plane waves and not to be of practical
significance. However there are important physical situations where the range needs to be extended
for a complete physical description of all the signals of interest. For example, in the design of towed
sonar arrays, signals can propagate along the mechanical structure of the array at a speed other than
c (the speed of sound in sea-water); in this situation the complete wavevector domain is required to
fully understand the effect of array self noise.
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7.3. Linear array—one-dimensional case

Consider the unform linear array of
Figure 7.1 steered in a direction θ.
One can assume, without loss of gen-
erality, that the array is aligned along
the y-axis and the φ steering direc-
tion is chosen to be π/2. Let x̃j(f)
be the Fourier transformed output of
the jth receiver at frequency f and
located at position uj . Then, from
(3.52) the output of a frequency-
domain beam steered in direction θ
is

x

y

d

2d

3d

(K − 1)d

0

θs

Wave front

FIGURE 7.1. System of coordinates

ỹ(θ, f) ≡ ỹ(θ, π/2, f) =
1
K


K∑

j=1

x̃j(f) exp
(
− ikT uj

) . (7.6)

Since

uj =
[ 0

(j−1)d
0

]
,

(7.6) can be written as

ỹ(θ, f) =
1
K

{
x̃1(f) + x̃2(f)z−1 + x̃3(f)z−2 + · · ·+ x̃K(f)z−(K−1)

}
, (7.7)

where

z = exp
(2πid sin θ

λ

)
= exp(ikyd). (7.8)

Dispensing with the angular variable, θ, and working with the wavevector compo-
nent, ky gives

ỹ(ky, f) =
1
K


K∑

j=1

x̃j(f) exp
(
− i(j − 1)kyd

) . (7.9)

This expression looks remarkably like a Fourier series where, instead of a time
sampling of T a spatial sampling interval of d is used, and instead of ω, as the
transformed variable ky is used, i.e.,

T ⇔ ω
l l
d ⇔ ky
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In (7.9), ky = 2π
λ sin θ is the y-component of the wavevector; and since

cky

2π
=

c

λ
sin θ = f sin θ, (7.10)

it follows that ky may be interpreted as a spatial frequency2. To understand this
from a physical point of view, consider Figure 7.2 which depicts a sinusoidal signal
arriving at a vertical linear array located along the y-axis. The horizontal axis
denotes any line in the x− z plane. The wavelength of the incoming signal can be
resolved into two components of length λ′ = λ/ sin θs along and λ/ cos θs normal
to the array, respectively.

λ

λ
/

si
n

θ s

λ/ cos θs

θs

x

y (array axis)

FIGURE 7.2. Projection of wavelength along a linear array

The components of the plane wave, exp{i(ks)xx} and exp{i(ks)zz}, are unity by
virtue of the array geometry. However, the component along the y-axis, termed the
spatial factor and given by exp{i(ks)y(j−1)d}, is non-zero and can, as illustrated
in Figure 7.2, be interpreted as a plane wave of wavelength λ/ sin θs propagating
along the array from end-fire. As the incidence angle of the plane wave, viz., θs is
changed so is the wavelength of the y component. Some examples of the spatial
factor for an array such that d/λ = 1/2 are given below.

a. End-fire signal (i.e., θs = π/2 ⇒ λ′ = λ

2In seismic applications, sin θ
λ

is called slowness.
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⇔

Spatial factor d/λ = 1/2 Nyquist sampling of a sinusoid

FIGURE 7.3. Analogy between spatial and temporal sampling:
end-fire

The analogy between time series analysis is apparent: in the end-fire case and at
half-wavelength spacing, an end-fire signal is analogous to sampling a sine wave
whose frequency is the Nyquist rate.

b. Broadside signal (i.e., θs = 0 ⇒ λ′ = ∞)

Spatial factor d.c. signal

FIGURE 7.4. Analogy between spatial and temporal sampling: broadside

Similarly, the broadside example is analogous to sampling a d.c. signal in the time
domain. Furthermore, these examples illustrate that the spatial separation of re-
ceivers is analogous to the time interval between samples for time series analysis.

7.4. Wavenumber beamforming

The idea of forming beams in a direction θ by phase-shifting the receiver outputs so
that, for a signal from that direction, they are all brought into phase was introduced
in Chapter 6; this can be generalised to the concept of forming a beam for a signal
with a particular wavevector component ky. 3

The output of such a beam can then be written as:

ỹ(ky, f) =
1
K
vH(ky)x̃(f), (7.11)

3It should be noted that not all values of |ky| will correspond to actual angles of incidence; for
|ky| > 2π/λ there is no such real angle. Nevertheless, as will be discussed later, this generalised
concept is still very useful.
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where, for this linear array with receivers located along the y-axis, the steering
vector as a function of the wavevector component ky, v(ky), is given as:

v(ky) =


1

exp(ikyd)
exp(iky2d)

...
exp[iky(K − 1)d]

 (7.12)

and x̃(f), is the vector of Fourier transformed receiver outputs.

Since the spatial sampling is uniform and (7.11) is a discrete Fourier transform,
the output ỹ(ky, f) is periodic in ky. It can readily verified by inspection of the
phase factors that v(k′y, f) = v(ky, f) if k′y = ky + m2π/d. Thus the period of
v(ky, f), and hence ỹ(ky, f), is 2π/d, i.e.,

ỹ(ky, f) = ỹ(ky + m2π/d, f)

where m is any integer.

To illustrate this the output power, |ỹ(ky, f)|2 of a unform linear array of 16 re-
ceivers as a function of ky is plotted below. This example assumes a signal incident
upon the array from 30◦ of broadside and a frequency such that d/λ = 1/2. The
periodicity of 2π/d is obvious.

−3 −2 −1 0 1 2 3
−40

−35

−30

−25

−20

−15

−10

−5

0

dB

wavevector (in units of pi/d)

FIGURE 7.5. Periodicity of the wavevector beamformer

Since the peak has been normalised to unity, the above is equal to the beam pattern
P (ky, (ks)y) of a linear array steered in the wavevector direction ky = 0.5 and
plotted as a function of the wavevector component (ks)y. From (3.55) it can be
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shown that, for a unform linear array of K receivers, the beam pattern is given by

P (ky, (ks)y) =
1

K2

(
sin(Kd((ks)y − ky)/2)
sin(d((ks)y − ky)/2)

)2

(7.13)

which can be written, in steering vector notation, as

P (ky, (ks)y) =
1

K2

∣∣vH(ky)v((ks)y)
∣∣2 . (7.14)

Note in particular that:

(i) since x̃j(f) is complex, the spatial Fourier transform, ỹ(ky, f) and hence
the beam pattern, is not symmetric about the origin;

(ii) because of the periodic nature of the beam pattern only the region

−π/d < ky ≤ π/d.

is considered;

(iii) the beam pattern is analogous to the response function of a bandpass fil-
ter, and in this sense beamforming is analogous to spatial filtering;

(iv) observe however that periodicity in θ that must always be present is not
the same as the periodicity in ky.

7.5. Steering beams in wavevector

First consider the beam pattern for a beam steered in the broadside direction, i.e.,
ky = 0 at d/λ = 1/2. In this case

(ks)y = 2π sin θs/λ = π sin θs/d

and the beam pattern will have its maxima at values of (ks)y equal to integer
multiples of π/d. This is plotted below both as a function of (ks)y and the corre-
sponding values of sin θs and θs.



7.5. STEERING BEAMS IN WAVEVECTOR 95

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−40

−35

−30

−25

−20

−15

−10

−5

0
dB

wavevector (in units of pi/d)

−1 0 1 sin(theta) 

−90 −30 0 30 90 theta 

FIGURE 7.6. Steering at broadside—0◦

Note that a linear scale in (ks)y implies a nonlinear scale in θs and that the range
of values of (ks)y from−π/d to π/d is equivalent to θs ranging from−90◦ to 90◦.

Now consider the case of steering a beam in direction θ. As discussed in Sec-
tion 5.3, this requires that the output from each receiver is multiplied by a phase
shift, i.e., the jth receiver is multiplied by exp(−i(j−1)dky), where ky = 2π/λ sin θ.
From Fourier transform theory a phase multiplication in one domain results in a
shift in the transform domain. Since wavevector beamforming is a spatial trans-
form, steering in the spatial domain by phase multiplication results in a translation
in the ky, wavevector, domain. (This is analogous to modulating a signal onto a
carrier in the time series case.) This results in the following change of axis

k′ys = (ks)y − ky,

where ky is the steering direction of the beam. Illustrated below is the beam pat-
tern response, as a function of (ks)y for the steering angle of 30◦. In this case
ky = π/d sin(30◦) or, in the normalised units of π/d, 1/2. The maximum of the
beam pattern occurs when (ks)y equals this value since the beam pattern is just a
translated version of that shown in Figure 7.6. Again the corresponding values of
θs and sin θs and indicated in the axis below.
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FIGURE 7.7. Steering at 30◦

Note that in wavevector coordinates the beamwidth is independent of steering di-
rection, however in angular coordinates this is not the case; because of the nonlin-
ear relation between θ and sin θ the beamwidth, in angular coordinates, increases
as we steer towards end-fire.

As a further example consider the wavevector beam pattern for a beam steered at
90◦. In this case the axis is translated by an amount sin(90◦)π/d, i.e., one unit of
π/d.

Note that translation holds in the wave-vector domain but not in the angular do-
main. Thus in contrast to the situation in Chapter 3 in which the beam patterns
looked markedly different as the steering direction changed it can now be seen that
this difference is simply due to the mapping of ky → θ. As the examples illustrate,
this simple observation has the following important ramifications.

(a) The envelope and shape of the sidelobe pattern is independent of the
steering direction. For example, it is obvious that the height of highest
sidelobe (−13.5 dB relative to the peak) is independent of the steering
direction.

(b) The broadening of the main beam when steering towards end-fire is solely
due to the sin θ deformation.

(c) The number of nulls is independent of the steering direction and are equi-
spaced in (ks)y, i.e. sin θs.

BProblem E.22

BEx 5 2
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FIGURE 7.8. Steering at 90◦

7.6. Steering independent beams

In Chapter 5 the concept of forming multiple beams was introduced and some
practical considerations effecting the number of beams formed was discussed. This
issue will now be considered from a theoretical point of view.

First consider the case of two beams steered in direction θ1 and θ2. If the differ-
ence |θ1 − θ2| is small relative to their beamwidths then it would be expected that
the beam outputs would be similar, whilst if the difference is large then it would
be expected that their outputs would be more or less independent. Thus the first
problem to consider is how to determine, at half wavelength, the steering directions
and number of independent beams needed to cover the angular region from −π/2
to π/2. As will be seen, use of the above translational properties in wavevector
allows an easy determination of the number and directions of these beams.

Two beams are defined to be independent if their steering vectors are linearly inde-
pendent which is equivalent to requiring that their steering vectors be orthogonal.
Denoting the values of ky corresponding to θ1 and θ2 as k1 and k2 then the orthog-
onality condition can be expressed as

vH(k1)v(k2) = 0. (7.15)

Reflecting back to Chapter 3 this is equivalent to requiring that the steering direc-
tion, k1 of the first beam be chosen to be at the same position as a null of the beam
pattern of the second beam. Since the beam pattern has K−1 nulls equally spaced
in ky on the region −π/2 to π/2 the nulls are separated from the main lobe by
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multiples of ∆ky = 2π/Kd. Thus two beams are orthogonal if k1 = k2 + m∆ky

for m any integer not equal a multiple of K.

Furthermore, as there are K−1 nulls in the beam pattern it follows that in addition
to the broadside beam there are K − 1 other independent beams at values of ky

given by

k(j)
y = 2πj/Kd = 2π/λ sin θj for j = −K/2, . . . ,K/2 and j 6= 0.

Alternatively, in angular coordinates the steering directions of these independent
beams is given by sin θj = jλ/Kd. Thus taking a spatial Fourier transform is
equivalent to forming the complete set of independent beams.

The progressive phase factor for steering in direction θj , z(θj), is given by

z(θj) = exp(2πid/λ sin θj)

which, on substituting for sin θj above, reduces to

z(θj) = exp(2πij/K)

which is the discrete Fourier transform4. Thus taking a spatial Fourier transform is
equivalent to forming the complete set of independent beams.

If only a finite number of beams are formed and a desired signal is incident upon the
array from a direction slightly different to that of the nearest beam then this signal
will be suppressed. For equi-spaced beams this loss is greatest when the signal’s
ky direction lies midway between any two beams. In the case where all beams are
independent, this loss is ∼ 3.9 dB and in many practical applications is too great.
In such cases extra beams more closely spaced in ky are steered. For example,
steering 2K beams equally spaced in ky, reduces this loss to around 1.1 dB. In this
case the progressive phase factor can be written as

z(θj) = exp(πij/K) for j = 0, 1, 2, . . . , 2K − 1.

In practice this can be efficiently implemented by zero padding the vector of re-
ceiver outputs and taking a discrete Fourier transform of size 2K.

7.7. Varying the temporal frequency

The situation considered above was one in which the wavelength of the incident
signal was twice the receiver spacing. Now consider varying the frequency of
the signal, thus changing the ratio d/λ. First consider how the ranges of ky, i.e.,
[−π/d, π/d] and sin θ are related. In order to satisfy the necessary constraint that

−1 ≤ sin θ ≤ 1

or equivalently that

−2π/λ ≤ (2π/λ) sin θ ≤ 2π/λ

4Choosing the number of receivers, K, to be a power of 2, allows the efficiency of the FFT to
be used to effect the beamforming.
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it is required that

−π/d(2d/λ) ≤ ky ≤ π/d(2d/λ).

Defining “physical angles” to be those that correspond to−1 ≤ sin θ ≤ 1 it follows
that the corresponding range of ky is determined by the factor 2d/λ. For example
at a frequency such that λ = 4d all angles lie within the range [−π/2d, π/2d]
whilst conversely for λ = d the range of ky is [−2π/d, 2π/d]. Thus at frequencies
below the half-wavelength of the array the range of ky corresponding to all possible
physical angles is compressed whilst at frequencies above the half-wavelength of
the array the range is expanded. This is best illustrated graphically below where
the range of ky versus the frequency of the incident signal is illustrated.

ky

frequency

−2π/d −π/d 2π/dπ/d

quarter wavelength 4d = λ

half wavelength 2d = λ

d = λ

FIGURE 7.9. Frequency-wavenumber representation

With some looseness of terminology this has been traditionally termed the freq-
uency-wavenumber representation. Since ky = 2πf sin θ/c it follows that straight
lines radiating from the origin correspond to particular values of θ. Directions of
particular significance are the end-fire lines corresponding to sin θ = ±1 and the
broadside line corresponding to sin θ = 0. The end-fire lines ky = ±2πf/c split
the frequency-wavenumber representation into two regions..

(i) Within the interior connected region all values of ky correspond to values
of θ lying between ±π/2. Depending on terminology this region is often
termed the “physical” or “real” region. In acoustics and sonar it is some-
times called the “acoustic region”. Lines of constant bearing have slope
(2πf sin θ/c)−1. In particular the broadside signal has an infinite slope
as indicated above.

(ii) The two regions such the |ky| > 2πf/c would not be expected to contain
energy propagating across the array as a plane wave with speed c. How-
ever often energy propagating through the superstructure of an array at a
different speed c′ is picked up by the array receivers and appears in these
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FIGURE 7.10. Regions of the frequency-wavenumber space

regions. This often occurs for towed sonar arrays and this additional en-
ergy appears as unwanted array self noise. Steering beams in this region
determines how much of this unwanted noise is present.

7.8. Beam patterns in the frequency-wavenumber representation

The expression for the beam pattern, i.e.,

Ps(ky, (ks)y) =
1

K2

(
sin(Kd((ks)y − ky)/2)
sin(d((ks)y − ky)/2)

)2

shows that, as a function of (ks)y and f , the beam pattern is independent of f .
In the example below the broadside beam patterns for a 15 element array at d/λ
of 1, 1/2 and 1/4 are illustrated. They are all identical but are simply shifted
in frequency. The number of sidelobes within the ‘physical region’ varies with
frequency. Also illustrated, for d/λ = 1 are the grating lobes which as can be
seen are simple due to periodicity of the Fourier transform induced by the uniform
spatial sampling.

In general the beam pattern at a particular steering angle, θ, and frequency, f0 can
be simply obtained by the following translations. First slide the broadside beam
pattern at d/λ = 1/2 vertically to the desired frequency. Next, calculate the value
of ky by 2π/cf0 sin θ and slide the beam pattern horizontally to that value of ky.
In all translations the periodic nature of P (ky, (ks)y) must be taken into account.
In summary all that is required is the basic shape of the broadside beam pattern at
d/λ = 1/2. An example of this is shown below where the beam pattern for the
following three cases: (a) broadside beam at d/λ = 1, (b) −30 degree beam at
d/λ = 1/2 and (c) end-fire beam at d/λ = 1/4 are plotted.

The concepts introduced here can readily be generalised to arbitrary arrays where
a four-dimensional transform to the kx, ky, kz, f domain can be effected.
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FIGURE 7.11. Frequency invariance of the wavevector beam pattern
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FIGURE 7.12. Frequencies and angles



7.9. OVERVIEW 102

7.9. Overview

This Chapter has emphasised the importance of the wavevector:

• in representing plane waves that traverse the array aperture,
• its relationship to the spatial variable u,
• wavevector beamforming,
• steering beams in wavevector, and
• beam patterns in frequency-wavenumber.

Summary

(1) When the space-time wave field f(u, t) comprises the linear superposition of
plane waves, it is the four-dimensional Fourier transform of the value at the origin
α(k , ω).

(2) For a linear array, the wavevector k is the Fourier transform of the spatial variable
u.

(3) In wavevector coordinates, the beamwidth of a linear array is independent of the
steering direction.

(4) For a linear array, the two-dimensional plot of steered beamformer output as a
function of frequency and wavenumber has a “physical” or “real” region |ky| ≤
2πf/c. The other regions where |ky| > 2πf/c would not correspond to energy
propagating with speed c, but is often provides useful indication of other, extrane-
ous signals propagating with different velocities.



CHAPTER 8

BEAMFORMING - RANDOM PROCESSES

8.1. Introduction

So far beamforming discussions have been restricted to deterministic far field sources.
However in practice an array is operated in the presence of both internal and ex-
ternal noise sources. For example, in sonar, random noise generated by the wind
on the surface of the sea is a common source of external noise, whilst in radar
and communications systems it is often internal receiver thermal noise that limits
system performance. Furthermore the desired signals themselves may be noisy.
For example, a spread spectrum communications or GPS signal can, from an array
processing point of view, conveniently be represented as a random process.

In this Chapter the receiver outputs are represented as random processes and ex-
pressions for the mean output power of time and frequency domain beamformers
are derived.1

8.2. Covariance function and covariance matrix

Consider the case where the outputs xi(t) and xj(t) of a pair of receivers are real
random processes. In this case the cross- covariance function is defined as

RXi,Xj (t, t) = E{xi(t), xj(t)}, (8.1)

where E{·} is formally defined by

E{xi(t1), xj(t2)} =
∫∫

u1u2p(xi(t1) = u1, xj(t2) = u2) du1 du2 (8.2)

and

p(xi(t1) = u1, xj(t2) = u2)

is the joint p.d.f of x(t1) and x(t2).

Generalising to the case of a random vector the covariance matrix2 of the receiver
outputs of an array may be written as

1The reader is invited to revise some basic theory of random processes presented in Appendix B.
2Strictly this is a cross-covariance matrix but by convention its common name, covariance ma-

trix, is used.

103
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Rx(t1, t2) = E{x(t1)xT (t2)}

=


E{x1(t1), x1(t2)} E{x1(t1), x2(t2)} · · · E{x1(t1), xK(t2)}
E{x2(t1), x1(t2)} E{x2(t1), x2(t2)} · · · E{x2(t1), xK(t2)}

...
...

. . .
...

E{xK(t1), x1(t2)} E{xK(t1), x2(t2)} · · · E{xK(t1), xK(t2)}

 (8.3)

In many cases the output of each receiver is fed into a quadrature receiver prior to
beamforming and, as discussed, in Chapter 2 the in-phase and quadrature compo-
nents out of such a receiver are represented as a complex time series. In this case
the covariance matrix of receiver outputs is defined as

Rx(t1, t2) = E
{
x(t1)xH(t2)

}
where H denotes the Hermitian transpose.
If the random processes are jointly stationary then the cross-covariance function is
a function of time differences, i.e.,

Rx(t1, t2) = Rx(t1 − t2). (8.4)

An important case is when the receiver outputs are correlated Gaussian random
processes. In the complex Gaussian case the joint p.d.f. of the receiver outputs,
px(x(t)) is given by

px(x(t)) =
1

πK |Rx|
exp(−xH(t)R−1

x (t1, t1)x(t))

8.3. Cross-spectral matrix

In Chapter 6 frequency domain beamforming was considered using the Fourier
transform of the output of the j th receiver. Denoting this as x̃j(f), it is defined as

x̃j(f) =
∫ ∞

−∞
xj(t)e−2πiftdt. (8.5)

Since xj(t) is a random process it follows that x̃j(f) is a random function. Let us
write

(Rx)ij(f) = E{x̃i(f)x̃∗j (f)}. (8.6)

and define the cross-spectral matrix Rx(f) ,
[
(Rx)ij(f)

]
.

Letting x̃(f) be the vector of the Fourier transformed receiver outputs:

x̃(f) =

 x̃1(f)
x̃2(f)

...
x̃K(f)

 , (8.7)

it follows that

Rx(f) = E
{
x̃(f)x̃H(f)

}
. (8.8)
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8.4. Examples of the cross-spectral matrix

The cross-spectral matrices of signal and noise are defined as

Rs(f) = E
{
s̃(f)s̃H(f)

}
(8.9)

and
Rn(f) = E

{
ñ(f)ñH(f)

}
. (8.10)

respectively.

If the signal and noise are uncorrelated, then

Rx(f) = E
{
x̃(f)x̃H(f)

}
= E

{
(s̃(f) + ñ(f))(s̃H(f) + ñH(f))

}
= E

{
s̃(f)s̃H(f)

}
+ E

{
ñ(f)s̃H(f)

}
+ E

{
s̃(f)ñH(f)

}
+ E

{
ñ(f)ñH(f)

}
= E

{
s̃(f)s̃H(f)

}
+ 0 + 0 + E

{
ñ(f)ñH(f)

}
= Rs(f) + Rn(f). (8.11)

When the signal comprises a superposition of N independent random processes,
its cross-spectral matrix is the sum of the cross-spectral matrices of the N random
process.

Recall that the vector of receiver outputs at frequency f for a signal incident upon
the array with wave-vector ks can be written as

s(ks, f) = s̃(f)


exp(ikT

su1)
exp(ikT

su2)
...

exp(ikT
suK)

 = s̃(f)v(ks), (8.12)

where s̃(f) is the Fourier component of the incident signal at frequency f and uj

is the position of the j-th receiver. In this case the cross-spectral matrix is given by

Rs(f) = E
{
s̃(f)s̃H(f)

}
= E

{
s̃(f)v(ks)s̃∗(f)vH(ks)

}
= E {s̃(f)s̃∗(f)} v(ks)vH(ks)

= σ2
s(f)v(ks)vH(ks), (8.13)

where as σ2
s(f) is the power of the incident signal at frequency f . In the presence

of noise, which is uncorrelated with the signal, the cross-spectral matrix of the
receiver output at frequency f is given by

Rx(f) = σ2
s(f)v(ks)vH(ks) + Rn(f). (8.14)
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The above expression can readily be extended to two random signals in noise where
the signals are uncorrelated with each other:

Rx(f) = σ2
1(f)v(k1)vH(k1) + σ2

2(f)v(k2)vH(k2) + Rn(f). (8.15)

For L uncorrelated signals the receiver output vector is

x(f) =
L∑

`=1

s(k`)v(k`) + n(f) (8.16)

Defining the (K × L) matrix V and the L−vector s(f):

V (f) =
[
v(k1)

...v(k2)
... · · ·

...v(kL)
]

(8.17)

and s(f) = [s(k1) s(k2) · · · s(kL)]T , (8.18)

we have x(f) = V (f)s(f) + n(f). (8.19)

V (f) is called the array manifold matrix. If the L signals are all independent of
one another, the cross-spectral matrix becomes

Rx(f) = E{x(f)x(f)H}
= Rs(f) + Rn(f)

= V (f)S(f)V (f)H + Rn(f), (8.20)

where S(f) = diag [σ2(k1) σ2(k2) · · · σ2(kL)] . (8.21)

In the limit as the number of signals L approaches infinity we replace the above
summation by an integral and write

Rs(f) =
∫

σ2(k)v(k)vH(k) dk. (8.22)

The above expression is often used as a model for distributed noise—as the follow-
ing two examples illustrate.

(a) Spherically isotropic noise
Spherically isotropic noise is modelled by independent sources of

equal strength uniformly distributed on the surface of a sphere of infinite
radius. The field at the receiver then consists of an integral of plane waves
whose power is uniform in angle and hence k and the cross-spectral ma-
trix of isotropic noise can be written as

R iso(f) =
∫

σ2(k)v(k)vH(k) dk (8.23)

and it can be shown that R iso(f) reduces to

(R iso)ij(f) = σ2
n(f)

sin[2π|ui − uj |/λ]
2π|ui − uj |/λ

, (8.24)

where σ2
n(f) is the isotropic noise power at a receiver.
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(b) 2-D Isotropic noise
This case is similar to above except we assume the independent sources

are located on a infinite plane. Note that this model is often used in sonar
to model acoustic noise generated by the combined action of wind and
waves on the surface of the ocean.

Without proof the cross-spectral matrix is stated to be

(R2d-iso)ij(f) = σ2
n(f)J0(2π|ui − uj |/λ), (8.25)

where J0 is the zero-th order spherical Bessel function.

8.5. Frequency Domain Beamforming for Random Processes

In Chapter 5 it was shown that the Fourier transform ỹ(k, f) of the output of a
conventional beamformer is given by

ỹ(k, f) =
1
K
vH(k)x̃(f) (8.26)

Since xj(t) is a random process it follows that ỹ(k, f) is a random function. The
mean output power, pconv(k), of the beam steered in direction (θ, φ) is then given
by

pconv(k) = E
{
|ỹ(k, f)|2

}
= E

{
1

K2
vH(k)x̃(f)x̃H(f)v(k)

}
=

1
K2

vH(k)E
{
x̃(f)x̃H(f)

}
v(k)

=
1

K2
vH(k)Rx(f)v(k) (8.27)

which expresses the mean output power in terms of the cross-spectral matrix.

8.6. Examples of beamforming with the cross-spectral matrix

8.6.1. Signal and noise uncorrelated.
If the receiver outputs due to signal and noise are uncorrelated then

Rx(f) = Rs(f) + Rn(f) (8.28)

and thus it follows that

pconv(k) =
1

K2
vH(k)Rs(f)v(k) +

1
K2

vH(k)Rn(f)v(k) (8.29)

This can be generalised to the case where the field at the array comprises the super-
position of N independent random processes incident upon the array; the output
beamformer power is the sum of the output beamformer powers of the N random
processes.
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8.6.2. Noises uncorrelated with one another.
When the noises at the receivers are uncorrelated with one another and have equal
variance, the cross-spectral matrix is

Rn =
[
E{ni(f)n∗j (f)}

]
=
[
σ2

nδjk

]
(8.30)

= σ2
nI . (8.31)

In this case the output power pconv(k) of a beam steered in direction k is given by

pconv(k) =
1

K2
vH(k)Rn(f)v(k)

=
1

K2
vH(k)σ2

nI v(k)

=
1
K

σ2
n (8.32)

which is independent of the steering direction, i.e., the output beam power is inde-
pendent of direction.

8.6.3. Single arrival.
For a single signal incident upon the array from direction ks with no noise the
cross-spectral matrix of the receiver outputs can, from (8.13) be written as

Rs(f) = σ2
s(f)v(k)vH(k) (8.33)

and consequently the output power of a beam steered in direction k given by

1
K2

vH(k)Rs(f)v(k)

becomes

σ2
s(f)
K2

vH(ks)v(k)vH(ks)v(k)

which, apart from the power term, σ2
s(f), is the beam pattern of the array. Note

that the maximum of this function occurs at k = ks.

8.6.4. L arrivals.
The above example can be generalised to the case in which L plane waves are
incident upon the array from directions k1, k2, . . . , kL.

In this case the output of the conventional beamformer steered in direction k can
be shown to be given by

L∑
`=1

σ2
` (f)
K2

vH(k)v(k`)vH(k`)v(k), (8.34)

which can be recognised as the weighted sum of L beam patterns, with each beam
pattern weighted by the power of the plane wave. BProblem E.23
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8.7. Time Delay and Sum Beamforming for Random Processes

Recall from Chapter 5 that the time series output of such a beamformer can be
written as:

y(t, θ, φ) =
1
K

∑
xj(t− τj(θ, φ))

where

τj(θ, φ) =
1
c
{xj cos θ sinφ + yj sin θ sin φ + zj cos φ}

Since the receiver outputs are random processes it follows that y(t, θ, φ) is also a
random process. Because of the random nature we are generally mainly interested
in its mean output power which is given by

E
{
|y(t, θ, φ)|2

}
= E

 1
K2

∣∣∣∣∣
K∑

k=1

xk(t− τk(θ, φ))

∣∣∣∣∣
2


= E

{
1

K2

K∑
k=1

K∑
l=1

xk(t− τk(θ, φ))xl(t− τl(θ, φ))

}

=
1

K2

K∑
k=1

K∑
l=1

E {xk(t− τk(θ, φ))xl(t− τl(θ, φ))}

=
1

K2

K∑
k=1

K∑
l=1

{R(τk(θ, φ)− τl(θ, φ))}kl (8.35)

provided the random processes are stationary. This approach is rarely used in prac-
tice and is only given for completeness.

8.8. Overview

This Chapter the receiver outputs are represented as random processes and ex-
pressions have been derived for the mean power of beamformers. Central to the
derivations are the cross-covariance function and cross-spectral matrix.
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Summary

Definitions:
(1) Cross-covariance function

RXi,Xj(t, t) = E{xi(t), xj(t)}.
(2) Cross-covariance matrix

Rx(t1, t2) = E
{
x(t1)xH(t2)

}

(3) Cross-spectral matrix

Rx(f) =
[
(Rx)ij(f)

]
,

(Rx)ij(f) = E{x̃i(f)x̃∗
j(f)}.

Relationships
(1) For stationary random processes,

Rx(t1, t2) = Rx(t1 − t2).

(2) For complex x(t), the joint p.d.f. is given by

px(x(t)) =
1

πK |Rx| exp(−xH(t)R−1
x x(t)).

(3) If signal and noise are uncorrelated,

Rx(f) = Rs(f) + Rn(f).

(4) When the signal comprises a superposition of L independent plane-wave arrivals
of power σ2

1 , σ
2
2 , · · · , σ2

L, the cross-spectral matrix of receiver outputs can be ex-
pressed as

Rx = V SV H + Rn,

where S = diag[σ2
s(k1) σ2

s(k2) · · · σ2
s(kL)]

and V = [v(k1) v(k2) · · · v(kL)].

(5) For spherically isotropic noise,

(R iso)ij = σ2
n

sin[2π|ui − uj |/λ]
2π|ui − uj |/λ .

(6) For 2-D (cylindrically) isotropic noise,

(R2d-iso)ij = σ2
nJ0(2π|ui − uj |/λ).
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ARRAY GAIN

9.1. Introduction
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FIGURE 9.1. Beamsteering—general array

Recall that the conventional beamformer introduces delays (or, for narrowband
signals, phase shifts) so as to bring all the wanted signals into phase.

This beamformer not only discriminates against unwanted signals (i.e., interfer-
ence) but also suppresses noise. Consider the case (typical of internal noise) in
which the noises from all receivers have the same noise power (variance) and are
statistically independent of one another. The wanted signals are brought into phase
and summed, as illustrated in Figure 9.2, so the amplitude is increased K times
(and hence the power is increased K2 times).

However, the noises, being independent of one another, have random phases so the
resultant noise power is increased only K times. The resulting signal-to-noise ratio
is thus improved by a factor of K (or 10 log10 K dB). This result applies to both
narrowband and broadband beamformers.

111
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9.2. Expression for array gain

In what follows, we operate only in the frequency domain and assume that all
signals and noises are zero-mean random processes.

Consider the signal-to-noise ratio at the output of an array of arbitrary geometry;
beamforming is done by multiplying by complex scalars w∗

k(k), k = 1, . . . ,K.
Signals are assumed to arrive as plane waves. The output of the beamformer is

K∑
k=1

w∗
k(k)x̃k(f) = wH(k)x̃(f) (9.1)

and the mean power output of the array is E{|wH(k)x̃(f)|2},

where x̃(f) =

 x̃1(f)
x̃2(f)

...
x̃K(f)

,

x̃k(f) is the output of the k th receiver at frequency f and, as before, k is the
wavevector corresponding to the beamsteered direction. If the receiver output com-
prises signal from a direction with wavevector ks plus additive noise, we can write:

x̃(f) = s̃(ks, f) + ñ(f), (9.2)

where s̃(ks, f) and ñ(f) are the signal and noise vectors, both random complex
K-dimensional vectors. For a plane wavefront arriving at the array, the signal

Signals

Signals add coherently

Noises

Noises add incoherently

FIGURE 9.2. Illustrating coherent and incoherent summation
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output from the array is s̃(ks, f) = s̃(f) v(ks) (see (8.12)). Hence

x̃(f) = s̃(f)v(ks) + ñ(f). (9.3)

The signal and noise variances at the receivers are defined to be1

σ2
s(f) = E{|s̃(f)|2}, σ2

n(f) = E{|ñk(f)|2}, k = 1, . . . ,K. (9.4)

Signal-to-noise ratio is defined in the usual way:

SNR ,
output power when only signal is present

output power due to noise alone
. (9.5)

Hence the signal-to-noise ratio at a single receiver is

SNRreceiver = σ2
s(f)/σ2

n(f). (9.6)

In the absence of noise and when the signal arrives from direction ks and the beam
is steered in direction k, the array output power is

ps = E
{∣∣wH(k)s̃(ks, f)

∣∣2}
= E

{
wH(k)s̃(ks, f)s̃H(ks, f)w(k)

}
= wH(k)E

{
s̃(ks, f)s̃H(ks, f)

}
w(k)

= wH(k)Rs(f)w(k). (9.7)

When no signal is present, the output power from the array is

pn = E
{∣∣wH(k)ñ(f)

∣∣2}
= E

{
wH(k)ñ(f)ñH(f)w(k)

}
= wH(k)E

{
ñ(f)ñH(f)

}
w(k)

= wH(k)Rn(f)w(k). (9.8)

Rs(f) and Rn(f) are the signal and noise cross-spectral matrices which were
defined in (??) and (??). Note that the diagonal elements of Rn(f) are

[Rn(f)]jj = E
{
ñj(f)ñ∗j (f)

}
= σ2

n(f) ∀ j (9.9)
and hence

σ2
n(f) =

1
K

Tr{Rn(f)}, (9.10)

where Tr(·) is the trace of a matrix which is defined to be

Tr(A) ,
∑

j

ajj . (9.11)

Similarly

σ2
s(f) =

1
K

Tr{Rs(f)}. (9.12)

1The receivers are assumed to be identical, so the receiver noise powers are equal.
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The signal-to-noise ratio of the beamformer output using w(k) is

SNRbeam =
ps

pn
=
wH(k)Rs(f)w(k)
wH(k)Rn(f)w(k)

. (9.13)

The array gain is defined to be the ratio of the SNR at the output of the beamformer
to that at a receiver:

G ,
SNRbeam

SNRreceiver
. (9.14)

Substituting (9.6), (9.10), (9.12) and (9.13) in (9.14) we obtain the following ex-
pression for the array gain:

G =
(

σ2
n(f)

σ2
s(f)

)(
wH(k)Rs(f)w(k)
wH(k)Rn(f)w(k)

)
=
(

Tr{Rn(f)}
Tr{Rs(f)}

)(
wH(k)Rs(f)w(k)
wH(k)Rn(f)w(k)

)
. (9.15)

Note that (9.15) applies to any beamformer. For the conventional unshaded beam-
former, the weights are equal to the phase factors

(
w(k) = v(k)

)
. For shaded

beamformers they take the form {wj(k)} = {αjvj(k)} but in general we can use
any weights to achieve a desired result2.

For a plane wave signal with a wavevector ks (see (8.13))

Rs(f) = σ2
s(f)v(ks)vH(ks),

and hence, substituting in (9.15), the array gain for a plane-wave signal is

G =
(

σ2
n(f)

σ2
s(f)

)(
σ2

s(f)wH(k)v(ks)vH(ks)w(k)
wH(k)Rn(f)w(k)

)
=

Tr
(
Rn(f)

)
K

(
|wH(k)v(ks)|2

wH(k)Rn(f)w(k)

)
. (9.16)

Note that the expression for gain does not involve the signal variance σ2
s(f), but

only the signal direction ks.

We are particularly interested in the array gain when the beam is steered directly
at the wanted signal (i.e., k = ks). In what follows we shall assume this to be so
unless specifically stated to the contrary.

9.3. Conventional beamformer

We now derive expressions for the array gain for the unshaded (“boxcar”) conven-
tional beamformer in a few special cases. For this beamformer, when the beam is

2In Chapter 9 we shall pursue this thought further.
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steered in the signal direction, w(ks) = 1
K v(ks) = 1

K v(k) so (9.16) becomes

Gconv = K
Tr{Rn(f)}

vH(k)Rn(f)v(k)
. (9.17)

9.3.1. Independent noises.
Here we consider the case in which the noises at the receivers are all independent
of one another and have identical power (variance). Then

Rn(f) = σ2
n(f)I , (9.18)

and
Tr{Rn(f)} = Kσ2

n(f). (9.19)

Substituting (9.18) and (9.19) in (9.17), the array gain is seen to be

Gconv = K (9.20)

as expected.

The power from a conventional beamformer steered in the signal direction in the
absence of signal and in the absence of noise are

pn = vH(k)Rn(f)v(k) = Kσ2
n(f),

ps = vH(k)Rs(f)v(k) = K2σ2
s(f). (9.21)

9.3.2. Single interfering signal.
Next we take the case in which there is a single interfering source of power σ2

i (f)
from direction with wavevector ki, and no noise in the system. Then the cross-
spectral matrix of the noise, Rn(f), takes the same form as the signal in (9.2) in
the previous example, but with σ2

i (f) and ki instead of σ2
s(f) and ks:

Rn(f) = σ2
i (f)v(ki)vH(ki). (9.22)

The signal-to-noise ratio at the receivers is

SNRreceiver = σ2
s(f)/σ2

i (f) (9.23)

and at the output of the beamformer is

SNRbeam =
K2σ2

s(f)
σ2

i (f)vH(k)v(ki)vH(ki)v(k)

=
(

σ2
s(f)

σ2
i (f)

)
1

|vH(k)v(ki)|2/K2
. (9.24)

The array gain is then

Gconv =
1

|vH(k)v(ki)|2/K2
. (9.25)
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Note that the expression in the denominator, |vH(k)v(ki)|2/K2 = P (k, ki),
the value of the beam pattern of the array in direction ki when beamsteered in the
direction k . Hence in this case the array gain is

Gconv =
1

P (k, ki)
. (9.26)

If the interfering source is located in a null of the beam pattern, P (k, ki) = 0 and
the gain becomes indefinitely large (in theory at least). This is to be expected be-
cause the beamforming in this idealised case, and for this particular frequency, has
completely eliminated the interference.3 When the beam is steered in a direction
coincident with the interference, P (ki, ki) = 1 and the gain is unity (i.e., there is
no improvement in using an array over a single receiver).

9.3.3. Single interfering source and independent noises.
Next we consider the case in which there is a single interfering source of power
σ2

i (f) and wavevector ki and independent noise of power σ2
n(f) which is the same

for all receivers. Then

Rn = σ2
n(f)I + σ2

i (f)v(ki)vH(ki), (9.27)

SNRreceiver =
σ2

s(f)
σ2

n(f) + σ2
i (f)

, (9.28)

SNRbeam =
K2σ2

s(f)
Kσ2

n(f) + σ2
i (f)|vH(ki)v(k)|2

(9.29)

so

Gconv =
K(1 + β)

1 + βKP (k, ki)
, (9.30)

where β , σ2
i (f)/σ2

n(f) is the interference-to-receiver noise ratio (INR).

If β � 1, Gconv ' K, as would be expected – this is the result when there is
only independent noise present.

If β � 1, Gconv varies from 1 (when the beam is steered directly at the inter-
ference) to Kβ (when the beam is steered in a direction such that the interference
is at one of the nulls of the beam pattern. Array gain is plotted in Figure 9.3 as a
function of signal arrival direction for a linear array with 15 elements spaced half a
wavelength apart; there is a single 0 dB interference at 45◦ and 0 dB of independent
self-noise.

As would be expected, the gain is high when the signal and interference directions
are well separated.

3In practice there is always some internal noise present, as considered in the next section, in
which case the gain is large but remains finite.
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BProblem E.24

BProblem E.25

BEx 6 1–6 4

9.3.4. Spherically isotropic noise, unform linear array steered at broad-
side.
Consider next the case of a unform linear array, unshaded and steered at broadside,
in a spherically isotropic noise field.4 In this case the steering vector is

v(k) =

1
1
...
1

 , (9.31)

and it can be shown that the elements of the cross-spectral matrix take the form 5

[Rn]jk =
σ2

n(f) sin
(
2πd(j − k)/λ

)
2πd(j − k)/λ

. (9.32)

This is a special matrix called a symmetric Toeplitz matrix with the form:

Rn = σ2
n(f)



1 r2 r3 · · · · · · rK
r2 1 r2 · · · · · · rK−1

r3
. . . . . . . . . · · ·

...
...

. . . . . . . . . . . .
...

... · · · . . . . . . . . . r2
rk rK−1 · · · r3 r2 1

 , (9.33)

where

4In the sonar community, array gain in the case of spherically isotropic noise, no interfering
sources and no internal noise, is also called the directivity index.

5See Chapter 8.
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rm =
sin
(
2πd(m− 1)/λ

)
2πd(m− 1)/λ

. (9.34)

The array output power in the absence of signal is

vH(k)Rnv(k) = 1TRn1

= [1 · · · 1]
[
Rn

] [1
...
1

]

=
K∑

k=1

K∑
j=1

[Rn]jk

= σ2
n(f)

{
K + 2

K−1∑
k=1

(K − k)rk

}

= σ2
n(f)

(
K + 2

K−1∑
k=1

(K − k)
sin(2πkd/λ)

2πkd/λ

)
. (9.35)

Substituting (9.35) in (9.17) we have an expression for the array gain:

Gconv =
K

1 + 2
K

∑K−1
k=1 (K − k) sin(2πkd/λ)

2πkd/λ

(9.36)

Let us see how array gain varies with d/λ. At d/λ = 0,

Rn = σ2
n(f)

[1 · · · 1
...

. . .
...

1 · · · 1

]
= σ2

n(f)11T , (9.37)

and ∑
j,k

[Rn]jk = σ2
n(f)K2, (9.38)

so substituting in (9.38) and (9.19) the array gain for d/λ = 0 is G conv = 1. As
would be expected, there is no gain compared to a single receiver because we have
in effect coalesced our array into a single point.

When d is a multiple of λ/2,

Rn = σ2
n(f)I , (9.39)

and
Gconv = K. (9.40)

Note that this is the same value for gain as we had obtained for independent noises
(see (9.20)).6 Array gain is shown plotted against d/λ in Figure 9.4 for an array of
15 receivers, for both the broadside and end-fire cases (the latter case is considered
in the next section).

As frequency is increased, the array gain oscillates about the value K. Note that the
gain can be increased significantly above K by judicious choice of array spacing.

6 The noises in this particular case are uncorrelated but not necessarily independent. In the
special case of Gaussian noise (i.e., with a normal distribution), uncorrelated implies independent.
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FIGURE 9.4. Array gain for broadside and end-fire arrays, plotted
against d/λ

9.3.5. Spherically isotropic noise, unform linear array steered at end-fire.

This case is identical with the previous one (steered broadside), except that here,
for the end-fire case,

v(k) =


1

exp(i2πd/λ)
exp(i4πd/λ)

...
exp(i2(K − 1)πd/λ)

 . (9.41)

When d = nλ/4, where n is an integer, it can be shown that the array gain is again
K7.

Array gain for the end-fire case is also shown plotted in Figure 9.4. BProblem E.26

9.4. Array gain for shaded beamformer

Here we consider the case in which the noises are independent – i.e., Rn =
σ2

n(f)I , and the beam is steered in the signal direction (k = ks). Substituting
in (9.16), we have:

Gshaded =
|wH(k)v(k)|2

wH(k)w(k)
(9.42)

7The proof is left as an exercise for the reader.
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TABLE 1. Gain for large K

Type of shading Gshaded
Gunshaded

10 log
(

Gshaded
Gunshaded

)
dB

Boxcar (unshaded) 1 0
Bartlett 0.747 −1.3

Blackman 0.577 −2.4
Hamming 0.732 −1.4

Hanning 0.669 −1.7
Kaiser (−30 dB sidelobes) 0.947 −0.2

Triangular 0.750 −1.2

0 10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d/λ

R
at

io
 o

f 
Sh

ad
ed

/U
ns

ha
de

d 
ga

in

Blackman

Chebyshev  Ripple = 20dB

Chebyshev Ripple = 30dB

Hamming

Hanning

Kaiser Beta = 2.1166

FIGURE 9.5. Array gain/K for uniformly spaced linear array
with 15 receivers, d/λ = 0.5, plotted against K, independent
noises.

The gain with shading is less than that for the unshaded conventional beamformer.
Figure 9.5 shows a plot of the ratio of the gains with and without shading when the
noise is uncorrelated. The ratio varies with the number of receivers K, and—for
other than the Chebyshev case—tends to approach a constant value for large K.
Table 9.4 displays the ratio of the gains with and without shading, for a uniform
linear array of 300 receivers spaced half a wavelength apart.

9.5. Array gain with null steering

Here we again consider the case in which the noise is independent from receiver to
receiver. Recall from (9.42) that

G =
|wH(k)v(k)|2

wH(k)w(k)
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and that, for a beamformer that steers L nulls,

w(k) = AH(AAH)−1δ
(L+1)
1 ,

and8

wH(k)v(k) = 1

where

A =


vH(k)
vH(k1)

...
vH(kL)

 ,

AAH =


vH(k)v(k) vH(k)v(k1) · · · vH(k)v(kL)
vH(k1)v(k) vH(k1)v(k1)

...
. . .

...
vH(kL)v(k) · · · vH(kL)v(kL)

 ,

and

δ
(L+1)
1 =

 1
0
...
0


[(L+1)×1]

Then

w(k)HRnw(k) = σ2
nδ

(L+1)T
1 (AAH)−1AAH(AAH)−1δ

(L+1)
1

= σ2
nδ

(L+1)T
1 (AAH)−1δ

(L+1)
1

= σ2
n

[
(AAH)−1

]
11

and (9.43)

G =
1[

(AAH)−1
]
11

. (9.44)

We now make use of the following inequality[33, p.74]:

If A[K×K] is positive definite and A−1 = [aij ], then aii ≥ 1/aii,

with equality if and only if aij = 0 for j = 1, . . . , i− 1, i + 1, . . . ,K.

Noting that vH(k)v(k) = K, we have

G ≤ K,

with equality if and only if

vH(k)v(k1) = vH(k)v(k2) = . . . = vH(k)v(kL) = 0

8This was the constraint imposed when setting up the null-steering beamformer.
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– in other words, if and only if all the steered nulls coincide with the naturally-
occurring nulls of the conventional beamformer. (Of course, in this case, the null-
steering beamformer accomplishes nothing at all, as it only steers nulls where they
would have occurred anyway.)

We conclude that

the gain of a null-steered beamformer in the presence of uncorrelated
noise is always less than that of the conventional beamformer, unless all
steered nulls coincide with the nulls of the conventional beamformer.

As a rule of thumb, the greater the suppression of the sidelobes or of the main lobe,
the lower the gain of the null-steering beamformer.

9.6. Array gain expressed in terms of the beam pattern

Let us consider again the case in which the noise field can be modelled as arising
from a large number N of independent far-field sources. Recall the earlier result
from Chapter 7 that the noise cross-spectral matrix is

Rn =
N∑

m=1

σ2
m(km)v(km)vH(km), (9.45)

where σ2
m(km) and km are the power and wavevector of the m th far-field source,

respectively.

From (9.15) and (9.45), the array gain for a general weighting vector w(k) is

G =
(

Tr(Rn(f))
Tr(Rs(f))

)(
wH(k)Rs(f)w(k)
wH(k)Rn(f)w(k)

)
=
(

K
∑

m σ2
m

Kσ2
s(f)

)(
σ2

s(f)wH(k)v(ks)vH(ks)w(k)
wH(k)Rn(f)w(k)

)
=

(∑
m σ2

m

)
|wH(k)v(ks)|2∑

m σ2
m|wH(k)v(km)|2

. (9.46)

Recalling that the beam pattern for a beam steered in direction k is

P (k, ks) =
|wH(k)v(ks)|2

K2
(9.47)

and that by convention the weights w(k) are scaled so that P (ks, ks) = 1, then
the expression for array gain can be written in terms of the beam pattern:

G =
∑

m σ2
m∑

m σ2
mP (k, km)

. (9.48)
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If the noise far-field sources can be considered to be continuously distributed, then
(see Chapter 8, (8.22), (8.23)), (9.45) becomes an integral:

Rn =
∫

σ(k)v(k)vH(k) dk. (9.49)

If instead of the wavevector km we use angles (θ, φ), then the array gain is

G =

∫
4π N(θ, φ) dΩ∫

4π N(θ, φ)P
(
(θ, φ), (θs, φs)

)
dΩ

(9.50)

where N(θ, φ) is the power distribution of the far-field noise sources and

P
(
(θ, φ), (θs, φs)

)

is the array beam pattern, expressed here as a function of angles (θ, φ) and signal
arrival angles (θs, φs); integrals are taken over solid angle Ω.

9.7. Overview

In this chapter we have derived an expression for the gain of an array and illustrated
with a number of simple examples. We have seen the tradeoff between array gain
and sidelobe level when we use shading or null-steering. We have also shown how
array gain can be expressed in terms of the beam pattern.
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Summary

(1) Array gain G is defined as the ratio of signal-to-noise ratio at the output of the
array, to that at one of the receivers.

(2) The general expression for array gain is

G =
(

wH(k)Rs(f)w(k)
wH(k)Rn(f)w(k)

)(
Tr{Rn(f)}
Tr{Rs(f)}

)
.

(3) If only independent noise is present then
(a) for the conventional beamformer, G = K,
(b) with shading, G < K,
(c) with null-steering, G < K unless all the nulls are coincident with those of

the conventional beamformer.

(4) For a linear array of equi-spaced receivers immersed in spherically isotropic noise,
the cross-spectral matrix is Toeplitz.

(5) If the noise field is due solely to far-field independent sources, then the array gain
can be expressed in terms of the beampattern P (k, km):

G =
∑

m σ2
m∑

m σ2
mP (k , km)

.



CHAPTER 10

OPTIMAL PROCESSING

10.1. Introduction

The conventional beamformer and the shading techniques we have covered in
Chapters 3 and 4 use weights of the form

wj(k) = αjvj(k), j = 1, . . . ,K (10.1)
where

vj(k) = exp(ikT uj), (10.2)

uj is the vector of coordinates of the j th receiver and the {αj} are real-valued
weights designed to control sidelobe levels.

Then we considered more general weights wj(k) that were designed to steer nulls
in the beam pattern.

A natural extension is to select weights so as to optimise the signal processing
in some way. Various “optimal” processors have been proposed, with different
criteria for optimality. Here we consider

• maximising the array gain
• minimum power with linear constraint
• minimum mean-square error criterion
• maximum likelihood criterion

In each case we shall work only in the frequency domain.

Readers are invited to revise some basic tools for multivariate optimisation, given
in Appendix A.

10.2. Maximising gain

10.2.1. Optimal weights.
Since array gain is a useful measure of the performance of the system, we are led
naturally to try to maximise it. Recall from (9.16) that the array gain for a beam
steered in the direction, k, of a plane wave incident upon the array from the same
direction is given by

G =
(

Tr(Rn(f)
K

)(
|wH(k)v(k)|2

wH(k)Rn(f)w(k)

)
. (10.3)

125
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We wish to maximise G with respect to w(k). In Appendix A it is shown that

G =
|wH(k)v |2

(wH(k)Rw(k))

is a maximum when

Rw(k) =
(

wH(k)v
wH(k)Rw(k)

)
v , (10.4)

so, if the inverse exists,

wmax gain(k) = αR−1
n (f)v(k), (10.5)

where α is some scaling factor. Since |α|2 appears in both the numerator and
denominator of the expression for G, its actual value is arbitrary. Substituting
(10.5) into (10.3) gives an expression for the maximum gain:

Gmax gain =
Tr
(
Rn(f)

)
K

vH(k)R−1
n (f)v(k) (10.6)

There are some aspects of this solution that are unsatisfactory.

(1) The expression wmax gain(k) = αR−1
n (f)v(k) does not inform us about

what value of α we might use in practice.

(2) Usually we cannot estimate the cross-spectral matrix of noise, Rn(f),
but only that of signal plus noise, Rx(f) = Rs(f) + Rn(f).

We shall derive in Section 10.3, using a different criterion, an optimal processor
that overcomes these difficulties.

10.3. Array gain vs beamsteered direction

Figure 10.1 shows array gain plotted against direction of arrival for a 15-element
array with adjacent receivers equally spaced half a wavelength apart, with optimal
and conventional beamforming; there are present two interferences at ±45◦, of
amplitudes 0 and −6 dB and uncorrelated noise of amplitude 0 dB. Note that the
gain drops in the vicinity of the interferences but is otherwise high. Note also that
the optimal and conventional gains are approximately equal in the directions of the
interferences. It will be shown shortly that the gain of the optimal beamformer is
always greater than or equal to that of the conventional beamformer.

In Figure 10.2 is shown plotted array gain for the maximum gain beamformer vs
beamsteered direction, with several levels of uncorrelated receiver noise and a 0 dB
interfering signal at an angle of 45◦. Note that, the lower the noise level, the higher
the gain in all directions except very close to the interference.
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FIGURE 10.1. Array gain plotted against beamsteered direction
for optimal and conventional beamforming. There are two inter-
ferences present, at θi = ±45◦ and INR = 0dB and INR =
−6dBdB.

10.3.1. Comparison of Optimal and Conventional Processors.
It is useful to compare the gain from this optimal processor with that from the
conventional beamformer. For the unshaded conventional beamformer, w(k) =
v(k)/K, so from (10.3) and (10.6),

Gmax gain

Gconv
=
{vH(k)Rn(f)v(k)}{vH(k)R−1

n v(k)}
K2

.

Here we make use of the Kantorovich inequality[3, p. 70] which states that, for a
positive definite Hermitian symmetric [K ×K] matrix R with eigenvalues

{λmax ≡ λ1 ≥ · · ·λk ≥ λK ≡ λmin},

(xHx)2 ≤ (xHRx)(xHR−1x) ≤ (xHx)2

4

{(
λmax

λmin

)1/2

+
(

λmin

λmax

)1/2
}2

.

(10.7)
Hence

1 ≤
Gmax gain

Gconv
≤ 1

4

{(
λmax

λmin

)1/2

+
(

λmin

λmax

)1/2
}2

. (10.8)

The above inequality reveals some interesting features of the optimal processor
compared to the conventional.
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FIGURE 10.2. Array gain for maximum gain beamformer plotted
against beamsteered direction for several values of noise. Single
interference at θi = 45◦ with INR = 0,−6,−12 and −18dB.

(1) The gain of the optimal processor is always equal to or greater than that
of the conventional.

(2) When Rn(f) = σ2
nI , λmax = λmin and Gmax gain = Gconv = K –

there is no improvement, as is expected.

(3) Because the upper limit involves the ratio of λmax/λmin, we have the fol-
lowing important result.

The optimal processor can only give a large improvement
over the conventional if λmax/λmin � 1 – i.e., if Rn(f) is
ill-conditioned.

(4) In practice there are constraints on the values that the signal vector v(k)
can take – because they must correspond to actual arrival directions – but
it is illuminating to explore what would happen if there were no such con-
straints.
Let {p1, · · · , pK} be the eigenvectors of Rn(f) corresponding to the
eigenvalues {λmax ≡ λ1 ≥ · · ·λk ≥ λK ≡ λmin}.
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(a) If v(k) could take a value equal to any eigenvector of Rn(f), then
the lower bound would be reached, and again Gmax gain = Gconv. Sit-
uations when this can occur are given in the examples to follow.

(b) If v(k) could take a value proportional to (p1+pK), then the upper
bound would be attained, and Gmax gain/Gconv = λ1

λK
+ λK

λ1
+ 2.

BProblem E.28

BEx 7 1–7 4

10.4. Examples – Gain

10.4.1. Uncorrelated noise.
Consider the case in which the noises at the receivers are all uncorrelated with one
another. Then

Rn(f) = σ2
nI (10.9)

which, substituted in (10.7), gives:

Gmax gain = K, (10.10)

the same result as for the conventional unshaded beamformer. In this case, then,
the optimal beamformer gives no improvement over the conventional beamformer,
whatever the beamsteered direction.

10.4.2. Uncorrelated noises, single interference.
Here we include a single interference with wavevector ki, so

Rn(f) = σ2
nI + σ2

i v(ki)vH(ki). (10.11)

To calculate R−1
n we use the well-known Woodbury matrix identity 1

(A + cuvH)−1 = A−1 − cA−1uvHA−1

1 + cvHA−1u
. (10.12)

Writing the INR β = σ2
i /σ2

n, and applying (10.12) to (10.11) gives

R−1
n (f) =

1
σ2

n

(
I − βv(ki)vH(ki)

1 + Kβ

)
(10.13)

and Gmax gain =
K(1 + β)
1 + Kβ

(
1 + Kβ −KβP (k, ki)

)
, (10.14)

where as before P (k, ki) is the beam pattern of the array. BProblem E.29

BProblem E.30
1Exercise: verify by direct multiplication.
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10.4.3. Errors in beamsteered direction.
Thus far in this Chapter, we have been assuming (see (10.3)) that the beamsteered
direction, k, is exactly equal to the direction of the desired signal ks but in practice
this may not be so.

Applying (9.16) we find that, when we maintain the distinction between k and ks,
the gain is:

G =
Tr
(
Rn(f)

)
K

(
|vH(k)R−1v(ks)|2

vH(k)R−1
n (f)v(k)

)
. (10.15)

Figure 10.2 shows a plot of gain versus beamsteered direction for several SNRs.
The fact that the peak response of the optimal beamformer is so sharp (particularly
for strong signal-to-noise ratios) means that if the beamsteered direction differs
from the direction of the wanted signal – even slightly – the processor will tend to
consider the signal as an interference and reject it.

10.5. Minimum power with linear constraint

Here we consider a processor whose output is of the form

y(k, f) = wH(k)x̃(f) (10.16)

Since noise contributes to the power out of the array processor, it would be desir-
able to minimise the array output power:

E{|y(k)|2} = E{wH(k)x̃(f)x̃(f)Hw(k)} (10.17)

= wH(k)E{x̃(f)x̃(f)H}w(k)

= wH(k)Rx(f)w(k).

We want to scale w(k) so that the beam pattern is unity in the beamsteered direc-
tion, i.e.,

wH(k)v(k) = 1 = vH(k)w(k). (10.18)

The problem here is therefore stated as:

Minimise
w(k)

wH(k)Rx(f)w(k)

subject to wH(k)v(k) = 1.

This is an example of optimisation subject to a linear constraint, which is dis-
cussed in Appendix A. Because we are minimisingwH(k)Rx(f)w(k) (the power
out of the beamformer) whilst maintaining the MRA at unity, this is commonly
called the Minimum Variance Distortionless Response (MVDR) processor.

Using (A.39) the solution is

wMVDR(k) =
R−1

x (f)v(k)
vH(k)R−1

x (f)v(k)
. (10.19)
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This expression for the weights under this criterion looks rather like (10.6) for
the maximum array gain criterion but with important differences: (10.19) involves
Rx(f) instead of Rn(f), and the scaling factor α is given explicitly.

Let us explore this similarity a little further. Recall that for a plane wave arrival

Rx(f) = Rs(f) + Rn(f) = σ2
sv(ks)vH(ks) + Rn(f). (10.20)

To calculate R−1
x (f) we use (10.12) to obtain, after a little manipulation,

wMVDR(k) =
R−1

x (f)v(k)
vH(k)R−1

x (f)v(k)
=

R−1
n (f)v(k)

vH(k)R−1
n (f)v(k)

. (10.21)

This is an important result. It shows that wmax gain is the same as wMVDR if we
set α =

{
vH(k)R−1

n (f)v(k)
}−1. Further, to derive the weights we can use the

cross-spectral matrix of the outputs of the receivers (which we can estimate ) rather
than the cross-spectral matrix of the noise (which we cannot).

It is assumed in (10.21) that the signal wavevector v(k) is known exactly. Often
it is not, in which case we may plot the power out of the beamformer as a function
of k – or equivalently, the steering directions (θ, φ)2. We term this the steered
beamformer output.

The mean output power, pMVDR(k), is given by E
{
|ỹ(k)|2

}
:

pMVDR(k) = E
{
|ỹ(k)|2

}
= E

{
wH(k)x̃(f)x̃H(f)w(k)

}
= wH(k)E

{
x̃(f)x̃H(f)

}
w(k)

= wH(k)Rx(f)w(k)

=
vH(k)R−1

x (f)Rx(f)R−1
x (f)v(k)(

vH(k)R−1
x (f)v(k)

)2
=

1
vH(k)R−1

x (f)v(k)
(10.22)

The above expression is the output power of the MVDR beamformer. The processor
represented by (10.22) often is called the adaptive beamformer3 .

10.6. Minimum mean-square error

In this approach we assume that we have a “desired signal”, d(f) to which we wish
to approximate; we then select receiver weights so as to minimise the mean-square

2In effect, we use the beamformer as an estimator of the direction of arrival of the signal.
3The term was coined because the processor weights were determined not only by the desired

steering direction but also by the noise cross-spectral matrix and were thus adapting to the noise field.
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error between d(f) and the sum of the weighted receiver outputs wH(k)x̃(f)4 .
The error signal is

ζ = d(f)− wH(k)x̃(f). (10.23)

The problem then is to minimise E{|ζ( w(k))|2} with respect to w(k). When
signals and noises are all stationary stochastic processes,

E{|ζ(w)|2} = E|d(f)|2 − 2<[E{d∗(f)wH(k)x̃(f)}] (10.24)

+ wH(k)E{x̃(f)x̃H(f)}w(k)

= E{|d(f)|2} − 2<
{
wH(k)Rxd

}
+ wH(k)Rx(f)w(k),

where
Rxd = E{d∗(f)x̃(f)}. (10.25)

The solution is straightforward; setting

∇wE{|ζ(w)|2} = 0 = ∇w∗E{|ζ(w)|2} (10.26)

we obtain wMMSE(k) = R−1
x (f)Rxd. (10.27)

In the case in which Rxd ∝ v(k), this processor takes the same form as the
MVDR processor, except for a scaling coefficient.

10.7. Maximum likelihood estimator

Here we derive an optimal processor based on maximum likelihood estimation5 .
As before, we operate in the frequency domain but omit the explicit dependence
on f.

We make the following assumptions:

• the desired plane-wave signal is deterministic,
• the noises are zero-mean gaussian variables with the same variance,
• signal and noises are complex variables,
• we know the cross-spectral matrix Rn(f) of the noise.

The vector of receiver outputs can then be written as

x̃(f) = s0v(k) + n(f), (10.28)

4This processor is the spatial version of the discrete-time finite interval Wiener filter. Knowledge
of the ‘desired’ signal can be obtained in a number of ways. There could be prior knowledge of the
signal – for example, there could be a coded component in part of the signal waveform, deliberately
inserted to facilitate processing – or the ‘desired’ signal could be estimated by pointing a beam in its
direction.

5Revision notes are provided in Appendix A
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where s0 is a scalar unknown parameter which we wish to estimate. For brevity, as
before, we omit the explicit dependence on frequency f .

The noise n has a zero-mean multivariate complex normal distribution6:

p(n) =
1

πK |Rn|
exp{−nHR−1

n n}. (10.29)

Then we have

p(x̃|s0) =
1

πK |Rn|
exp

[
−
(
x̃ − s0v(k)

)H
R−1

n

(
x̃ − s0v(k)

)]
(10.30)

and the log-likelihood function for an observation vector x̃ is

L(s0, x̃) = −K ln(π)−ln |Rn|−
(
x̃−s0v(k)

)H
R−1

n (f)
(
x̃−s0v(k)

)
. (10.31)

Using the rules of differentiation of Appendix A Section A.4.1, the conditions for
a maximum are

0 = ∇s∗0
L(s0, x̃) = 2vH(k)R−1

(
x̃ − s0v(k)

)
. (10.32)

and 0 = ∇s0L(s0, x̃) = 2vT (k)R∗−1
(
x̃∗ − s∗0v

∗(k)
)
, (10.33)

so the estimated value is 7

ŝ0 =
vH(k)R−1

n (f)x̃
vH(k)R−1

n (f)v(k)
=
(

R−1
n (f)v(k)

vH(k)R−1
n (f)v(k)

)H

x̃. (10.34)

This estimator is just a beamformer with weights

wCapon(k) =
R−1

n (f)v(k)
vH(k)R−1

n (f)v(k)
(10.35)

Note that the maximum likelihood estimate given by (10.34) is identical to the
MVDR beamformer of (10.22) for plane-wave signals. It is remarkable that we
have obtained the same result using a totally different approach.

6Many readers might be more familiar with the multivariate real normal distribution:

p(x) =
1

(2π)K/2|R|1/2
exp{−1

2
(x − µ)T R−1(x − µ)}.

7The approach is due to Capon ([6]) and the resulting processor often called the Capon estima-
tor. We use ·̂ to denote the estimated value of a variable.
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10.8. Summary of optimal processors

Each of the processors derived in this Chapter is a weighted beamformer.

Maximum Gain wmax gain(k) = αR−1
n (f)v(k)

Minimum power with linear
constraint

wMVDR(k) = R−1
x (f)v(k)

vH(k)R−1
x (f)v(k)

wMVDR(k) = R−1
n (f)v(k)

vH(k)R−1
n (f)v(k)

Maximum likelihood estimator wCapon(k) = R−1
n (f)v(k)

vH(k)R−1
n (f)v(k)

Minimum mean-square error ŵMMSE(k) = R−1
x (f)Rxd.

All involve the inverse of a cross-spectral matrix: in the case of the MVDR and
Maximum Likelihood processors, the result is the same whether using the cross-
spectral matrix of the noise n(f) or of the observation vector x̃(f). The former,
Rn(f), is usually unknown, but it is generally possible to estimate Rx(f).

10.9. Examples – Steered beamformer output

10.9.1. Independent receiver noises.
Consider the case in which there is no external signal and the noises from the
receivers are independent of one another. In this case Rx(f) = σ2

nI ,

w(k) =
σ−2

n v(k)
vH(k)σ−2

n v(k)
=
v(k)
K

(10.36)

and

pMVDR(k) =
1

vH(k)R−1
x (f)v(k)

= σ2
n/K

= pconv(k). (10.37)

As would be expected, the optimum and conventional processors give identical
results.

10.9.2. Single arrival, independent noises.
Consider the case in which the noise is due to independent receiver noise and a
single plane-wave interference from a direction whose wavevector is ki. Using
(7.15) (but substituting σ2

i for σ2
s and σ2

nI for Rn), the cross-spectral matrix of
the receiver outputs is seen to be

Rx(f) = σ2
i v(ki)vH(ki) + σ2

nI , (10.38)

and the output power from the conventional beamformer is
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pconv(k) =
1

K2

{
vH(k)Rx(f)v(k)

}
=

σ2
n

K
+ σ2

i P (k, ki), (10.39)

where P (k, ki) is the beam pattern of the array (see (3.55)). As discussed earlier,
power from the signal incident upon the array from direction ki ‘leaks’ into the
beam steered in direction k , by an amount equal to the value of the beam pattern
multiplied by σ2

i .

From Woodbury’s identity (10.12), the inverse of Rx(f) is

R−1
x (f) =

1
σ2

n

(
I − βv(ki)vH(ki)

1 + βvH(ki)v(ki)

)
(10.40)

where β , σ2
i /σ2

n is the ratio of the interference to receiver noise. Using (10.40) it
can be shown that the mean output power of the optimum beamformer is given by

pMVDR(k) =
1

vH(k)R−1
x (f)v(k)

(10.41)

=
σ2

n(1 + βK)
(K + βK2 − β|vH(ki)v(k)|2)

(10.42)

Three special cases of this equation are of interest; in each of these, the optimal
processor is the same as the conventional.

(i) As β → 0, pMVDR(k) → pconv(k).

(ii) When k = ki

pMVDR(k) =
σ2

n(1 + βK)
K

=
σ2

n

K
+ σ2

i = pconv(k).

(iii) When vH(ki)v(k) = 0, i.e., at the nulls of the beam pattern,

pMVDR(ki) =
σ2

n(1 + βK)
K(1 + βK)

=
σ2

n

K
= pconv(ki).

10.9.3. Multiple arrivals, independent noises.
The beamformer output power can be used as an estimator. If we plot pconv(θ)
or pMVDR(θ), the positions and amplitudes of the peaks in the plot provide an
indication of direction of arrival and strength of the signals8.

Figure 10.3 shows a plot of the steered beamformer output from a linear array with
15 equally spaced receivers. There are three arrivals, with strengths of 0dB,−10dB
and −15dB. Results are displayed using conventional and optimal (MVDR) pro-
cessing.

8We only consider azimuthal angles θ but the technique can readily be applied to both azimuth
and elevation φ
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FIGURE 10.3. Steered beamformer output for 15-receiver linear
array with conventional and optimal (MVDR) processing. There
are three plane-wave arrivals, all with θs = 90◦, from θs =
−75◦,−15◦ and 45◦, and with SNRs of 0,−10 and −15dB re-
spectively.

The conventional beamformer can just detect the −10dB arrival; the MVDR pro-
cessor can distinguish the −15dB signal.

The peaks in the steered beamformer output plot give a good indication of direction
of arrival. However, for low signal-to-noise ratios a correction would have to be
made for the power due to noise.

10.10. Discussion

10.10.1. Condition of the matrix R.
The expressions for the mean power of both the conventional and optimum beam-
formers are Hermitian forms in Rx(f) and its inverse, respectively. Since Rx(f)
is a cross-spectral matrix, it is non-negative definite. However, for the optimum
beamformer we require also that Rx(f) be of full rank (positive definite) and
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hence invertible. Many of the cross-spectral matrices encountered in beamform-
ing are singular or ill-conditioned – indeed, it was proved earlier that the optimal
beamformer cannot achieve a gain much higher than that of the conventional beam-
former unless the cross-spectral matrix is ill-conditioned.

A simple way of ensuring that the matrix will be non-singular is to sacrifice some
of the performance of the system and add a little uncorrelated receiver noise which
is modelled as Rx(f) → Rx(f) + σ2

n(f)I . This process is called regularisation.

10.10.2. Sensitivity to system parameters.
The optimal processors are very efficient in suppressing any interference in a di-
rection different from that of the desired signal (the “target”). However, the very
effectiveness of this suppression can create a problem: it was pointed out (see Sec-
tion 10.4.3) that, if the beamsteered direction is not exactly directed towards the
desired signal, that signal is itself considered to be an interference and will be – at
least partially – suppressed.

One optimisation criterion is to minimise the output power so we would expect
the desired signal to be rejected in proportion to its strength. This characteristic is
illustrated in Figure (10.2).

This rejection highlights a difficulty with optimal processors; although they do
often give large improvements over the conventional beamformers (shaded or un-
shaded), the greater the improvement the greater the sensitivity to minor errors in
the system. BProblem E.31

10.10.3. Practical implementation.
Because the weights for the optimal processors all involve the inverse of a matrix,
direct calculation of weights is computationally intensive. In some practical cases
it may be possible to implement the optimal processor. In other cases it may be too
expensive to do so and some suboptimal system must be used. Much of the effort
in signal processing has been devoted to devising suboptimal algorithms and tech-
niques that are fast, affordable and robust, and yet do not sacrifice too much perfor-
mance. It is however important to know what the theoretical optimum performance
is, so that a benchmark may be set for any proposed suboptimal implementation.

In practice for plane-wave arrivals we can work with either R−1
x (f) and v(k) or

w(k) and x̃(f). The choice is usually determined by the ratio of the number of
beams to be formed to the number of receivers. When the number of beams is
larger than the number of receivers then using the cross-spectral matrix directly is
usually more computationally efficient.

The development in this Chapter has focused on beamforming at a single fre-
quency. Generalisation of the expressions derived to narrowband signals in the
time domain is straightforward.

A few examples are listed below of matters that the system designer may need to
consider in practice.
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• What happens if a receiver fails or if its response characteristics drift?
• What if the array geometry is inadvertently distorted or receiver outputs

are subjected to phase errors?
• What are the effects of sampling and quantisation on system performance?
• What if the actual arrival direction is not what we have assumed?
• What if the noise field is not what we have assumed?
• What if the signals do not arrive as plane wavefronts?
• What if there are correlated arrivals – for example, due to multi-path prop-

agation?

10.11. Overview

In this Chapter we have shown how beamforming can be improved by optimising
performance according to some criterion, and have considered four criteria:

• Maximum Gain
• Minimum Power with Linear Constraint (or MVDR)
• Minimum Mean-Square Error
• Maximum Likelihood

Although the approaches are very different, the resulting beamformers are similar
or identical.
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Summary

(1) The Maximum Gain beamformer has the disadvantage that it requires knowledge
of the cross-spectral matrix of thenoise which is not generally known.

(2) The MVDR and the Maximum Likelihood processors can use the cross-spectral
matrix of signal-plus-noise, which can be estimated.

(3) The gain of the optimal processor is at least as good as that of the conventional
processor.

(4) In a number of cases – notably, in the presence of uncorrelated noise, or when
the beam is steered directly at a strong interference – there is no improvement in
using the optimal processor.

(5) The optimal processor can give a great improvement over the conventional – but
only if the cross-spectral matrix is ill-conditioned.

(6) The condition of a matrix can be improved, often with only a small sacrifice in
performance, by ‘regularisation’ (adding a small amount of uncorrelated noise).

(7) The greater the improvement over the conventional processor, the less robust
is the optimal processor (i.e., the greater is its sensitivity to small errors in the
system).

(8) In particular, if there is any difference between the assumed and actual direction
of arrival of the wanted signal, the wanted signal will tend to be rejected by the
optimal processor.

(9) In practice, there are numerous system errors (quantisation, sampling, etc.) that
must be taken into account when designing an optimal processor.

(10) Often the optimal processor is too expensive to implement, and suboptimal pro-
cessors must be found to approximate to the performance of the optimal.



CHAPTER 11

SAMPLE MATRIX BEAMFORMING

11.1. Introduction

In previous chapters the cross-spectral matrix of the receiver outputs, Rx(f) =
E{xxH}, appeared in various expressions such as:

Mean output of the conventional beamformer:

pconv(k) =
1

K2
vH(k)Rx(f)v(k) (11.1)

Mean output of the MVDR beamformer:

pMVDR(k) =
1

vH(k)R−1
x (f)v(k)

(11.2)

Weight vector of the optimal beamformer:

wMVDR(k) =
R−1

x (f)v(k)
vH(k)R−1

x (f)v(k)
, (11.3)

A common practice is to estimate Rx(f) and then to substitute it in to the relevant
expression (a technique called estimate and plug).

In this chapter we consider estimation of the cross-spectral matrix, Rx(f), and of
functions of Rx(f), again restricting attention to the frequency domain. Rx(f)
has to be estimated from a finite number of observations of the receiver output, and
we examine some consequences of doing so.

An estimator, denoted by ·̂ , is a function1 of observations (‘snapshots’) of a ran-
dom process and the result is the estimated value, often colloquially referred to as
‘an estimate of ’.

Estimators are random and their statistical properties, particularly the mean and
variance, have a significant influence on system performance.

Appendix B presents some revision notes on statistics.

1For example, a common estimator for the mean of a random process is

µ̂ = (1/N)

N∑
n=1

xn,

where {xn} is a particular set of observations of the random process.

140
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11.2. Estimation of the cross-spectral matrix

We begin by considering the case in which we have sampled receiver outputs and
the transformation to the frequency domain is effected by a discrete Fourier trans-
form on a block of N data points. The output of the kth receiver is denoted by
x̃k(f) and the output vector of the array by x̃(f)2 :

x̃k(f) =
N−1∑
n=0

xk(n∆T )e−2πifn∆T , (11.4)

where ∆T is the sampling interval. If the {xk(n∆T )} are observations of a random
process, x̃k(f) will be a random function.

We shall assume that we are dealing with stationary random processes so we can
invoke the ergodic theorem to replace the ensemble average by a time average.
Implementing a time average in the frequency domain appears contradictory but
commonly is effected by segmenting the data into M blocks each of N data points
and carrying out, for each receiver, an N -point discrete Fourier transform within
each block, as illustrated in Figure 11.1.3

2In practice the frequency variable is usually only evaluated at multiples of l/(N∆T ) and N is
chosen to be a power of 2 so that the standard form of the Fast Fourier Transform (FFT) can be used.

3Note that the blocks may be well separated or contiguous.
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FIGURE 11.1. Blocks of sampled data

Let x̃
(m)
k (f) denote the Fourier transformed output from the mth block of the kth

receiver, and x̃(m)(f) = {x̃(m)
k (f)} the corresponding vector:

x̃
(m)
k (f) =

N−1∑
n=0

xk (n ∆T + m(Tgap + N ∆T ))e−i2πfn ∆T , (11.5)

where Tgap is the interval between blocks of data.

If the data blocks are well separated in time, as illustrated in the middle plot of
Figure 11.1, it is reasonable to expect that they will be independent of one another.
However, usually one takes contiguous blocks as illustrated in the bottom plot of
the figure (Tgap = 0) and we have

x̃
(m)
k (f) =

N−1∑
n=0

xk(n∆T + mN∆T )e−2πifn∆T (11.6)

In this case the observations {x̃(m)
k (f)} are not necessarily independent of one

another, but are often assumed to be so.

Recall the definition of the cross-spectral matrix as an ensemble average:

Rx(f) = E
{
x̃(f) x̃H(f)

}
.
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and consider the following estimator:

R̂x(f) =
1
M

M∑
m=1

x̃(m)(f) x̃(m)H(f), (11.7)

If signals and noises are ergodic, the time average will converge to the ensemble
average:

E{.} → lim
M→∞

1
M

M∑
m=1

{.}

11.3. Properties of the estimated cross-spectral matrix

We state without proof some important properties of the estimator, R̂x(f), given
by (11.7) above.

(a) R̂x(f) is unbiased, i.e.,

E{R̂x(f)} = Rx(f). (11.8)

(b) If M > K and if there is some uncorrelated noise present, R̂x(f) is pos-
itive definite (i.e., all its eigenvalues are positive) and hence non-singular.

(c) If M < K (i.e., if the number of observations is less than the num-
ber of receivers), R̂x(f) is positive semi-definite (i.e., at least one of its
eigenvalues is zero and all the others are positive). This means R̂x(f) is
singular and cannot be inverted. We cannot therefore directly substitute
it in the expressions (11.2) and (11.3) for the optimal beamformer4.

(d) If the {x(m)} have a normal distribution and are statistically independent,
R̂x(f) is a maximum likelihood estimator of the cross-spectral matrix –
i.e., it maximises the log of the likelihood function

p(x(1), x(2), . . . , x(m)|Rx).

(d) Formally, R̂x(f) has a complex Wishart distribution, CW (M ;K:Rx(f)),
which is a matrix generalisation of a Chi-square distribution with 2M de-
grees of freedom.

(f) Equation (11.7) defines an unstructured estimate of the cross-spectral ma-
trix. However, in a given noise field the exact cross-spectral matrix has
a definite structure. Estimators that use prior knowledge of the cross-
spectral matrix are termed structured estimators5.

4However, we may employ a technique, known as regularisation or diagonal loading, which re-
places R̂x(f) by R̂x(f)+εI where ε is small compared to the noise power (ε � Tr(Rx(f))/K).
This makes R̂x(f) non-singular and allows us to benefit from using the optimal weights, but with
some degradation in performance.

5See, for example, [9].
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11.4. Conventional beamforming using the estimated cross-spectral matrix

Consider the output of the conventional beamformer:

y(k) =
1
K
vH(k)x̃(f).

Because x(f) is random, y(k, f) is, for a given value of f , a complex random
variable. To estimate the mean power we can square and average over M blocks to
obtain a smoothed estimate:

p̂conv(k) =
1
M

M∑
m=1

∣∣∣∣∣vH(k)x̃(m)(f)
K

∣∣∣∣∣
2

=
1
M

M∑
m=1

1
K2

vH(k)x̃(m)(f) x̃(m)H(f)v(k)

=
1

K2
vH(k)

(
1
M

M∑
m=1

x̃(m)(f) x̃(m)H(f)

)
v(k)

(11.9)

Comparing (11.9) with (11.1) justifies the use of

R̂x(f) =
1
M

(
M∑

m=1

x̃(m)(f) x̃(m) H(f)

)
(11.10)

as an estimator of the cross-spectral matrix.

p̂conv(k) has a statistical distribution which we now consider.

11.4.1. Properties of the Estimator.

(a) p̂conv(k) is an unbiased estimator of pconv(k).
Proof follows directly from (11.8):

E{p̂conv(k)} =
1

K2
vH(k)E{R̂x(f)}v(k)

=
1

K2
vH(k)Rx(f)v(k)

= pconv(k)

(b) Under the assumption that the {x̃(m)(f)} are, for different m, statisti-
cally independent, the probability distribution of p̂conv(k) is Chi-square
with 2M degrees of freedom: p̂conv(k) ∼ χ2

2M .6

6 The probability density function of a Chi-square variable with ν degrees of freedom is given
by

pχ2
ν
(u) =

u(ν/2−1)e−u/2

2u/2Γ(ν/2)
,
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(c) The variance of a Chi-square random variable is related to the mean by

σ2(χ2
ν) =

2µ2(χ2
ν)

ν

σ2(χ2
2M ) =

2µ2(χ2
2M )

2M
and thus

σ(p̂conv(k)) =
E{p̂conv(k)}√

M

=
pconv(k)√

M
.

Averaging over M blocks of data therefore reduces the standard deviation
of the estimator by a factor of

√
M7.

11.5. Optimal beamforming using the estimated cross-spectral matrix

The output power of the optimal beamformer given in (11.2) involves R−1
x . We

can apply (11.7) to estimate it8:

p̂MVDR(k) =
1

vH(k)R̂
−1
x (f)v(k)

(11.11)

We state the following results without proof:

(1) p̂MVDR(k) is a biased estimator of pMVDR(k) :

E

{(
vH(k)R̂

−1
x (f)v(k)

)−1
}

=
(

M −K + 1
M

)(
vH(k)R−1

x (f)v(k)
)−1

=
(

M −K + 1
M

)
pMVDR(k) ≤ pMVDR(k)

(11.12)

In practice, therefore, the optimal beamformer will underestimate the
output power— but for large M the bias becomes insignificant.

(2) The probability distribution of this estimator, under the same assumptions
as in section 11.4, is again Chi-square but with 2(M −K +1) degrees of
freedom:

p̂MVDR(k) ∼ χ2
2(M−K+1).

Some consequences are listed below.

where Γ(x) is the Gamma function, defined recursively by Γ(x) = xΓ(x − 1). Plots of the Chi-
square probability density function can be found in standard statistical texts.

7The factor
√

M , expressed in decibels as 5 log10 M dB, is often called the integration gain.
8When M ≥ K the estimated cross-spectral matrix is almost always non-singular.
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(a) Compared with the conventional estimator for the same number of
observations (M ), the estimate of the beamformer output will have
less degrees of freedom and the variance will therefore be greater.

(b) Heuristically, the 2(K − 1) degrees of freedom lost in the optimal
estimator may be attributed to the steering of (K − 1) nulls.

(c) From a detection point of view the increased variability will result
in a loss in detection performance. For small M , this loss may be
unacceptable and may negate the gains due to optimal beamforming.

(d) If (assuming that no signal is present) the estimate of the cross-
spectral matrix, R̂x, is used to calculate array gain :

Ĝmax =

(
Tr(R̂n(f))

K

)(
vH(k)R̂

−1
n (f)v(k)

)
,

the result will be overstated.

(e) Using R̂x to calculate the optimal beamformer weights will give
biased results. BProblem E.32

11.6. Sample matrix inverse update

11.6.1. Matrix accumulation.
For real-time applications, it is possible to estimate the optimal weights using the
sample matrix inverse techniques discussed above, in a recursive manner. The
process uses the Woodbury matrix inversion lemma to estimate the optimal weights
using the M vectors

{x̃(1), x̃(2), . . . , x̃(M−1), x̃(M)}
by updating the estimate derived using just the M − 1 vectors

{x̃(1), x̃(2), . . . , x̃(M−1)}.

In what follows, we show explicitly the dependence of the estimated cross-spectral
matrix on the number of observations, but for brevity omit the dependence on fre-
quency f . For convenience we define

ξ(M) ,
M∑

m=1

x̃(m) x̃(m)H (11.13)

Apart from the factor 1/M , this is an estimator of the cross-spectral matrix:

R̂
(M)
x ,

1
M

(
M∑

m=1

x̃(m) x̃(m) H

)

=
1
M
ξ(M) (11.14)
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Using the matrix inversion lemma(
bA + cuvH

)−1
= bA−1 − cbA−1uvH A−1

1 + cvH bA−1u
,

ξ(M) = ξ(M − 1)−1 − ξ(M − 1)−1 x̃(M) x̃(M)H ξ(M − 1)−1

1 + x̃(M)H ξ(M − 1)−1 x̃(M)
(11.15)

From (11.3), the estimated optimal weight vector, based on all M observations, is
given by

ŵMV DR(M) =
R̂
−1 (M)
x v(k)

vH(k)R̂
−1 (M)
x v(k)

(11.16)

Let us define9

µ(M) , x̃(M) H ξ−1(M − 1)x̃(M), (11.17)

α(M) , ξ(M)−1v(k) (11.18)

β(M) , vH(k)ξ(M)−1v(k) (11.19)

γ(M) , ŵH
opt(M − 1)x̃(M) (11.20)

η(M) ,
ξ−1(M − 1)x̃(M)

1 + µ(M)
. (11.21)

The estimated optimal weight vector is then

ŵMVDR(M) =
α(M)
β(M)

, (11.22)

which is calculated by updating the numerator and denominator of (11.22) as fol-
lows:

α(M) = α(M − 1)− γ(M)∗β(M − 1)η(M) (11.23)

β(M) = β(M − 1)

(
1− β(M − 1) |γ(M)|2

1 + µ(M)

)
. (11.24)

The beamformer output is updated using

y(M) = ŵH
opt(M)x̃(M)

=
β(M − 1)γ(M)

β(M) (1 + µ(M))
(11.25)

9Note that µ(M), γ(M) and η(M) use the previous estimate ξ−1(M − 1) with the latest
observation x(M).



11.6. SAMPLE MATRIX INVERSE UPDATE 148

and the power output using

p̂MV DR(M) =
1

vH(k)ξ−1(M − 1)v(k)

=
1

β(M)
(11.26)

The recursion is initiated by taking ξ−1(0) = ε−1I , where 0 < ε � 1. At each
step we obtain the exact sample matrix inverse solution, apart from some transient
terms from the initialisation of ξ−1(0).

BEx 8

11.6.2. Forgetting Factor.
In the preceding section, every observation is given the same weight. However, in
practice there is advantage in giving more weight to recent observations, and less
to earlier ones, to allow for slow variations in the environment. If the noise field
were to change, the processing would be able to adapt to the changes.

Consider an estimator of the cross-spectral matrix of the form:

R̂
(M)
x =

(
1− κ

1− κM

) M∑
m−1

x̃(m) x̃m HκM−m 0 ≤ κ ≤ 1 (11.27)

=
(

1− κ

1− κM

)(
x̃(M) x̃M H + κ R̂

M−1
x

)
.

The most recent observation, x̃(m) x̃(m) H , is given the most weight and previous
observations are weighted by a multiple of a forgetting factor κ. Let

ψ(M) ,
M∑

m−1

x̃(m) x̃m HκM−m

= κ

(
ψ(M − 1) +

1
κ
x̃(M) x̃(M) H

)
(11.28)

Using the same notation as before ((11.17)–(11.21)) for µ(M),α(M), β(M), γ(M)
and η(M), we have

R̂
(M)
x =

(
1− κ

1− κM

)
ψ(M) and (11.29)

ŵMVDR(M) =
α(M)
β(M)

, (11.30)

We state without proof the following recursive process:

α(M) =
1
κ

(
α(M − 1)− β(M − 1)γ∗(M)η(M)

)
, (11.31)

β(M) =
1
κ

(
β(M − 1)− β(M − 1)2 |γ(M)|2

κ + µ(M)

)
, (11.32)
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the updated output of the beamformer is

y(M) = ŵ(M) H x̃(M)

=
γ(M)

κ + µ(M)
(11.33)

and the output power is

p̂MV DR(M) =
1

β(M)
. (11.34)

11.7. Overview

In this Chapter we have described how the cross-spectral matrix of the receiver
outputs can be estimated and stated some of the properties of the estimator.

The properties of the conventional and optimal beamforming estimators were then
considered.

Finally, the Sample Matrix Inverse Update technique was described, in which the
optimal weights are calculated recursively.
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Summary

(1) The estimated cross-spectral matrix is unbiased.

(2) If the number of observations (M ) is less than the number of receivers (K)
(and in the absence of any other noise) the estimated cross-spectral matrix is
non-singular.

(3) If some uncorrelated noise is present, it becomes non-singular.

(4) The conventional beamformer is an unbiased estimator.

(5) Averaging over M observations reduces the standard deviation of the output of
the conventional beamformer by

√
M.

(6) The optimal beamformer is a biased estimator.

(7) The standard deviation of the optimal beamformer is higher than that of the
conventional.

(8) For small M the optimal beamformer may actually give worse performance than
the conventional.

(9) The optimal beamforming weights can be calculated recursively using the Sample
Matrix Inverse Update technique, and incorporating a forgetting factor if desired.



CHAPTER 12

GRADIENT DESCENT ALGORITHMS

12.1. Introduction

In Chapter 10 the optimal weights were derived by directly minimising the output
power given by

wH(k)Rx(f)w(k) (12.1)
subject to the linear constraint

wH(k)v(k) = 1 (12.2)

where k specified a variable steering direction and the assumption was made that
the cross-spectral matrix, Rx(f) was positive definite and known or could be es-
timated from the data. That solution required the inversion of the cross-spectral
matrix Rx(f) – a computationally intensive operation.

Here we derive Gradient Descent al-
gorithmsa to minimise (12.1) subject to
(12.2), which do not involve direct inver-
sion of the matrix.

Recall that for two dimensions the Her-
mitian form for the mean output power is
shaped like a bowl, as illustrated in Fig-
ure 12.1. For the case of an array of K,
receivers, the Hermitian form is a convex
surface. The constraint (12.2) is a plane,
and the solution lies on its intersection
with the convex surface.
aSee Appendix A for revision notes on optimisa-
tion techniques. FIGURE 12.1. Bowl-shaped surface

The gradient descent algorithm moves in steps in the direction of the steepest slope
of the constrained convex surface, adjusting the weight vector progressively to ap-
proximate more closely to the optimal weight vector.
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12.2. Deterministic Gradient Descent

In this Section, we devise a gradient descent algorithm under the assumption that
the cross-spectral matrix of the receiver outputs, Rx(f) is known.

12.2.1. Minimising output power subject to a linear constraint.
As in Chapter 9, we define a cost function comprising the output power and the
constraint surface:

ζ
(
w(k),w∗(k)

)
= wH(k)Rx(f)w(k)− λ

[
wH(k)v(k)− 1

]
− λ∗

[
vH(k)w(k)− 1

]
.

In the following, for brevity we omit the explicit dependence on k and f and write

w ≡ w(k)

v ≡ v(k)

Rx ≡ Rx(f)

ζ
(
w ,w∗) ≡ wHRxw − λ

[
wHv − 1

]
− λ∗

[
vHw − 1

]
. (12.3)

In Appendix A it was shown that the gradient descent algorithm for a real function
ζ(w ,w∗) of a complex variable and of its conjugate is

w(m + 1) = w(m)− µ ∇w∗ζ(w ,w∗)|w=w(m) , (12.4)

where w(m) is the vector of weights at the mth iteration, and that

∇w∗(wHv) = v , (12.5)

∇w(vHw) = v∗, (12.6)

∇w∗(vHw) = 0 = ∇w(wHv), and (12.7)

∇w∗(wHRw) = Rw . (12.8)

Let λ(m) be a Lagrange multiplier1. Applying (12.5)–(12.8) to (12.3),

∇w∗ζ(w ,w∗) = Rw − λv , (12.9)

and the gradient descent algorithm is

w(m + 1) = w(m)− µ
[
Rxw(m)− λ(m)v

]
. (12.10)

We now impose the constraint

vHw(m + 1) = 1 = wH(m + 1)v . (12.11)

to obtain

λ(m) =
vHRxw(m)

K
− vHw(m)− 1

µK
. (12.12)

The last term in equation (12.12) would be zero when the constraint was imposed
at the previous iteration (i.e., vHw(m) = 1) and could therefore be ignored – in

1See Appendix A for an introduction to Lagrange multipliers.
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theory at least. However, it has been reported [14] and [19] that retaining that term
in the algorithm prevents the accumulation of arithmetic errors.

Substituting (12.12) in (12.10) yields the updated vector of weights:

w(m + 1) = w(m)− µRxw(m) +
µ
(
vHRxw(m)

)
v

K
+

(
1− vHw(m)

)
v

K

=
(
I − vvH

K

)
w(m)− µ

(
I − vvH

K

)
Rxw(m) +

v

K

= P w(m)− µP Rxw(m) +
v

K

= P (I − µRx)w(m) +
v

K
, (12.13)

where

P , I − vvH

K
. (12.14)

(12.13) defines a deterministic algorithm which assumes knowledge of Rx
2.

P (I − µRx) does not depend on the w(m) and can be pre-calculated.

Note the term (I − µRx) in (12.13): the cross-spectral matrix mixes the compo-
nents of the weight vector during each iteration. Later we shall carry out trans-
formations of variables to diagonalise the matrix so that, during iterations, each
component of the weight vector is decoupled from every other.

A suitable initial weight vector which satisfies the constraint is that of the conven-
tional beamformer:

w(0) =
v

K
. (12.15)

Substituting (12.15) in (12.12) gives

λ(0) =
vHRxv

K
,

which is the power output of the conventional beamformer.

With appropriate choice of µ, the weights will converge to those of the optimal
beamformer:

w(∞) =
R−1

x v

vHR−1
x v

and the Lagrange multiplier will converge to the power output of the optimal beam-
former:

λ(∞) =
1(

vHR−1
x v

) ,

The operator P has some important properties that will be used to study the con-
vergence of this algorithm.

2Later we shall describe a processor which does not rely on such knowledge.
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(i) P is idempotent, i.e., P 2 = P and, since P v = 0, is the projection
operator onto the subspace orthogonal to v . It is of rank K − 1 .

(ii)

P Rxwopt =

(
I − vvH

K

)
RxR

−1
x v

vHR−1
x v

=

(
I − vvH

K

)
v

vHR−1
x v

= 0 (12.16)

(ii)

P wopt =

(
I − vvH

K

)
R−1

x v

vHR−1
x v

= wopt −
v

K
. (12.17)

12.2.2. Convergence.
We now derive conditions that guarantee the convergence of the iteration described
above. We transform the variables by a translation and subsequently a rotation of
axes.

We first shift the origin by the translation w → t = w − wopt and use (12.16)
and (12.17) :

t(m + 1) = w(m + 1)− wopt

= P
[
w(m)− µRxw(m)

]
+
v

K
− wopt

= P {w(m)− wopt}+
{
P wopt − wopt +

v

K

}
− µ{P Rxw(m)− P Rxwopt}

= P t(m)− µP Rxt(m)

= P (I − µRx)t(m).

Pre-multiplying by P and recalling that P 2 = P :

P t(m + 1) = P 2(I − µRx)t(m)

= P (I − µRx)t(m)

= t(m + 1) ∀m . (12.18)

Hence

t(m + 1) = P t(m + 1)

= P t(m)− µP Rxt(m)

= t(m)− µP RxP t(m)

= (I − µP RxP ) t(m) (12.19)

We now derive conditions for convergence of the algorithm, by considering the
eigenvalues of P RxP . Since both P and Rx are Hermitian, so is P RxP .

Let
{dmax ≡ d1, d2, · · · , dK ≡ dmin = 0}
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be the ordered eigenvalues of P RxP , with corresponding eigenvectors {Qi}, let
Q be the unitary matrix3 :

Q , [ Q1 : Q2 : · · · : QK ] ,

and let D be the diagonal matrix

D = Diag (d1, · · · , dK) .

P RxP then has an eigen-decomposition of the form

P RxP = QDQH (12.20)

Substituting (12.20) in (12.19),

t(m + 1) =
{
I − µQDQH

}
t(m)

=
{
QQH − µQDQH

}
t(m)

= Q{I − µD}QH t(m). (12.21)

Next we rotate the axes by pre-multiplying both sides of (12.21) by QH . Defining
R(m) , QH t(m), we have

R(m + 1) = (I − µD)R(m)

= (I − µD)2 R(m− 1)
= · · ·

= (I − µD)m+1 R(0) .

Since {I − µD} is diagonal, we can write

rk(m + 1) = (1− µdk)rk(m), (12.22)

so it is evident that, at each iteration, the components of R(m) are decoupled from
one another. We term each component a mode and by virtue of the decoupling can
consider the convergence properties of each mode separately.

Convergence is guaranteed if

|1− µdk| < 1 ⇐⇒ 0 < µdk < 2 ∀ i . (12.23)

If the above inequality holds for dmax then it holds for all di. Thus the convergence
condition is

µ < 2/dmax. (12.24)

3A (K ×K) unitary matrix Q has the property QQH = I = QH Q. Multiplying a vector
by a unitary matrix therefore does not change the norm of the vector, but rotates the vector.
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12.2.3. Convergence Properties.
Choice of µ
In practice we do not know, or may find it difficult to estimate, dmax. It is more
convenient to work instead with λmax. In the following we use

Tr(AB) = Tr(BA) and

P 2 = P .

In addition, if

{λmax ≡ λ1, λ2, · · · , λK−1, λK ≡ λmin}

are the ordered eigenvalues of Rx, it can be shown that

λmax ≥ dmax ≥ dmin ≥ λmin . (12.25)

Then

dmax < Tr{P RxP }
= Tr (RxP )

= Tr
(
Rx

(
I − vvH

K

))
= Tr

(
Rx −

vHRxv

K

)
≤ Tr(Rx)

= E

{
K∑

k=1

|x̃k|2
}

≈
K∑

k=1

|x̃k|2. (12.26)

∑K
k=1 |x̃k|2 is the sum of the instantaneous powers of the receiver outputs (at fre-

quency f ). A suitable (but conservative) choice of µ is therefore

µ <
2∑K

k=1 |x̃k|2
(12.27)
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Convergence in terms of weight vectors
Since R(m) = QH(w(m)− wopt) it follows that

w(m) = wopt + QR(m)

= wopt + [Q1 Q2 · · · QK ]

 r1(m)
r2(m)

...
rK(m)


= wopt +

K∑
k=1

rk(m)Qk

= wopt +
K∑

k=1

rk(0)(1− µdk)mQk,

= wopt +
K∑

k=1

rk(0) exp(−m/τk)Qk (12.28)

where

τk , − 1
ln |1− µdk|

(12.29)

is the time constant for convergence of each mode.

Provided µdk � 1 (i.e., the convergence is sufficiently slow),

τk ≈
1

µdk
. (12.30)

Rate of convergence

From (12.29) it can be seen that bounds
on µ are set by the largest and smallest
eigenvectors (dmax and dmin) :

(1− µdmax) > −1 and

(1− µdmin) < +1

The overall speed of convergence is thus
determined, as illustrated in Figure 12.2,
by how close (1 − µdmin) is to +1 and
(1− µdmax) is to −1.

−1 +10

1− µ λ
min

1− µ λ
max

1− µ d
max

1− µ d
min

FIGURE 12.2. Illustrating fac-
tors that determine convergence
rate

The ‘best’ choice of µ – a compromise between the two rates of convergence – is
given by

1− µ1dmin = −(1− µ1dmax)

or µ1 =
2

dmax + dmin
. (12.31)
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Instead of using the eigenvalues of P RxP , which depend on P (and hence on
the steering vector v), it is more convenient to use the eigenvalues of Rx :

µ2 =
2

λmax + λmin
. (12.32)

The maximum rate of convergence is then determined by how small is

|1− µ2λmin| =
∣∣∣∣1− 2λmin

λmin + λmax

∣∣∣∣
=

λmax − λmin

λmax + λmin

=
C − 1
C + 1

, (12.33)

where C = λmax/λmin is the condition number of the matrix Rx.

Plane wave in uncorrelated receiver noise

We consider here the example of a plane wave in uncorrelated noise:

Rx = σ2
nI + σ2

svsv
H
s ,

so we have

λmax = σ2
n + Kσ2

s ,

λmin = σ2
n,

µ2 =
Kσ2

s

2σ2
n + Kσ2

s

.

12.3. Least Means Squares—Stochastic Gradient Descent Algorithm

12.3.1. Introduction. In Section 12.1 an iterative scheme was derived that
converged to the optimum weight vector when the cross-spectral matrix was known
exactly. Unfortunately the cross-spectral matrix is not usually known and has to be
estimated. This can be done, as in Chapter 10, by taking a number of observations
of the output vector from the receivers {x(m),m = 1, · · · ,M} and calculating:

R̂x =
M∑

m=1

x(m)x(m)H .

In this section we consider the so-called least means-squares (LMS) algorithm,
which is a stochastic gradient descent technique in which a rank-one estimate of
the cross-spectral matrix is used at each step of the iteration. The LMS algorithm
is widely used because of its simplicity and low computational complexity.

Throughout this section, we work in the frequency domain. For convenience we
again omit the explicit dependence of the variables on frequency f and wavevector
k.



12.3. LEAST MEANS SQUARES—STOCHASTIC GRADIENT DESCENT ALGORITHM 159

12.3.2. Stochastic Gradients.
The LMS algorithm replaces the cross-spectral matrix, Rx, at the m-th stage in
the iteration by its rank-one estimate

R̂x(m) = x̃(m) x̃(m)H . (12.34)

Substituting (12.34) in (12.13), we have the constrained LMS algorithm, often
known as the Frost algorithm:

ŵ(m + 1) = P
(
I − µx̃(m) x̃(m)H

)
ŵ(m) +

v

K
(12.35)

where, as before,

P = I − vvH

K
Noting that the output of the beamformer at the m-th stage of the iteration, ŷ(m),
is given by

ŷ(m) = ŵH(m)x̃(m), (12.36)

(12.35) can be expressed simply as 4

ŵ(m + 1) = P
[
ŵ(m)− µ ŷ∗(m)x̃(m)

]
+
v

K
. (12.37)

As in the case of the deterministic gradient descent algorithm, a suitable initial
weight vector is that of the conventional beamformer:

ŵ(0) = v/K. (12.38)

The computational efficiency of the algorithm results from the simplicity of (12.35)
and (12.36).

12.3.3. Convergence in the Mean.
As discussed in earlier chapters, using an estimated cross-spectral matrix intro-
duces a statistical variability. For gradient descent algorithms this is manifested
through gradient noise whereby each component of the estimated weight vector
follows a noisy trajectory as illustrated in Figure 12.3.

Since we are dealing with statistical quantities we need to define convergence cri-
teria that reflect the statistical variability of the noise in the weights. We shall
consider convergence in the mean and mean square convergence.

Convergence in the mean is defined as

lim
m→∞

E{ŵ(m)} = wopt.

If this condition is met, the mean value of the weight vector will converge to the
true value. However, it is important to note that it does not necessarily ensure good
performance, as will be discussed shortly.

To proceed further we need to make the simplifying assumption that the {x̃(m)}
are, for different m, independent. In beamforming applications this is often valid.

4Note we have, somewhat innocuously, used m – formerly the iteration index – to denote which
block of finite Fourier transformed receiver outputs is used in the estimation.
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Observe in (12.34) that ŵ(m) is a function only of {x̂(m−1), x̂(m−2), x̂(m−3), · · · },
and not of x̂(m). It follows that ŵ(m) and x̂(m) are independent. Taking the ex-
pectation of both sides of (12.34), we have

E{ŵ(m + 1)} = P
[
E{ŵ(m)} − µE{x̃(m) x̃H(m)ŵ(m)}

]
+
v

K

= P
[
E{ŵ(m)} − µE{x̃(m) x̃H(m)}E{ŵ(m)}

]
+
v

K

= P [E{ŵ(m)} − µRxE{ŵ(m)}] +
v

K
, (12.39)

since by definition Rx = E
{
x̃(m) x̃(m)H

}
.

Note that (12.36) takes the same form as (12.13) when the cross-spectral matrix
is known. If E

{
ŵ(m)

}
= w(m) then E

{
ŵ(m + 1)

}
= w(m + 1), and the

convergence conditions are exactly the same as those derived in Section 12.1, viz.,

µ < 2/dmax. (12.40)

Let us define the vector of weight vector noise by

ε(m) , ŵ(m)− wopt; (12.41)

if µ satisfies (12.37), then lim
m→∞

ε(m) = 0 and the weights will converge in the
mean.

12.3.4. Mean-square Convergence.
Convergence in the mean is not sufficient as it guarantees nothing about the vari-
ability of the weight noise. Consider the two graphs in Figure 12.3. Both exhibit
convergence in the mean.

The first shows the desired performance, where the mean-square amplitude of the
noise decays to zero.

However, it can be shown that this does not occur with the LMS algorithm: the
variance of the weight noise will asymptote to a fixed level, and the weights will
have fluctuations called misadjustment noise. The result is that the output power
from the LMS beamformer is greater than that of the optimal.

The second plot in Figure 12.3 illustrates an example of noise in the weights that
converges to zero but has an undesirably high variance.

The level of misadjustment noise will depend not only on the step size µ but also on
the eigenvalues of P RxP . We define the covariance matrix of the weight noise
vector :

Σ(m) , E{ε(m)εH(m)}
and then use (12.13) to derive a recursive equation for Σ(m). Proceeding much as
before, we find that convergence of Σ(m) is guaranteed by setting

µ =
1

Tr(Rx)
. (12.42)
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Misadjustment
noise 

Desired
convergence 

Actual
convergence 

FIGURE 12.3. Illustrating convergence in the mean

However, in general with this value of µ the level of misadjustment noise will not
be acceptable. The misadjustment noise decreases as µ is decreased. To make it
small enough, a practical choice might be

µ <
1

10 Tr(Rx)
.

Note that decreasing the step size µ reduces the rate of convergence, so in choosing
µ we have to compromise between convergence rate and misadjustment noise. BEx 9
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12.4. Overview

In this Chapter we derived the deterministic gradient descent algorithm for the
(largely theoretical) case in which the cross-spectral matrix of the receiver outputs,
Rx(f), is known, and the conditions for the convergence of the algorithm.

Then we derived the stochastic gradient descent (LMS) algorithm.

Summary

(1) Convergence rates for the deterministic gradient descent algorithm are determined
by the eigenvalues of a certain matrix product which is inconvenient to calculate.

(2) It is possible to use a conservative approach, which uses only the eigenvalues of
the cross-spectral matrix and which is more easily calculated.

(3) The stochastic gradient descent (LMS) algorithm uses simply a rank-one estimate
of the cross-spectral matrix.

(4) This algorithm is simple and fast but, because of the crude approximation to the
cross-spectral matrix, suffers from misadjustment noise.

(5) If the step size is made sufficiently small, the misadjustment noise can be reduced
to a tolerable level. Thus there is a tradeoff between the rate of convergence and
the error.



CHAPTER 13

SPACE-TIME ADAPTIVE PROCESSING

13.1. Introduction

In Chapter 12 we derived the (deterministic) gradient descent and the stochastic
constrained LMS algorithms for narrowband signals. Here we extend the results
to the broadband case and introduce what has become known as space-time adap-
tive processing (STAP). As before, we begin with the optimal processor which
minimises output power subject to a set of linear constraints1; next we derive the
gradient descent algorithm and finally we consider the stochastic constrained LMS
algorithm. In this Chapter, we only have real quantities.

Recall that in the narrow-band case there was only one constraint: the response in
the beamsteered direction was unity (wHv = 1.) In the broadband case, because
we are processing in both space and time, it is possible to constrain not only the
angular (wavevector) but also the frequency response of the processor.

We assume that we have a linear array of K receivers and that the desired signal
arrives from the broadside direction2. STAP processing operates in the space-time
domain and uses a bank of transversal filters as illustrated in Figure 13.1. The out-
puts of the receivers are sampled synchronously at times ∆T, 2∆T, . . . and are fed
into a bank of transversal filters, each with J tap points, so there are KJ unknowns.
We use the following notation:

k denotes the k th receiver,
j denotes the j th tap point,
n denotes the nth time sample.

Occasionally, where it will make matters clearer, we show the dimension of the
matrix or vector explicitly, e.g., x[K] is a K-dimensional vector.

1Here we follow Frost’s work [14], but with a change in notation to be consistent with ours.
2To cater for the general case of an array with any known geometry, we simply add a set of

beamsteering delays before this processor, so as to bring all the signals into phase (“pre-steering”).

163
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13.2. Optimal broadband processor
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FIGURE 13.1. Adaptive constrained broadband LMS
processor—broadside case
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We now derive an expression for the optimal (minimum power with linear con-
straint) processor. Let x[n] ≡ x(n∆T ) be the K-dimensional vector of receiver
outputs at time t = n∆T :

x[n] =

x1[n]
...

xK [n]

 ; (13.1)

at the jth tap point it becomes

x[n− j + 1] =

x1[n− j + 1]
...

xK [n− j + 1]

 . (13.2)

Let us stack all these J vectors to create a composite KJ-dimensional vector; we
use a prime ( ′) to designate such large vectors and matrices, :

x′[n] =


x[n]

x[n− 1]
...

x[n− j + 1]
...

x[n− J + 1]

 =



x1[n]
...

xK [n]

x1[n− 1]
...

xK [n− 1]


...x1[n− j + 1]
...

xK [n− j + 1]


...x1[n− J + 1]
...

xK [n− J + 1]





. (13.3)

x′[n] =


x[n]

x[n− 1]
...

x[n− j + 1]
...

x[n− J + 1]

 =



x1[n]
...

xK [n]

x1[n− 1]
...

xK [n− 1]


...x1[n− j + 1]
...

xK [n− j + 1]


...x1[n− J + 1]
...

xK [n− J + 1]





. (13.4)
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We use a similar representation for the noises and signal:

n′[n] =


n[n]

n[n− 1]
...

n[n− j + 1]
...

n[n− J + 1]

 , (13.5)

where n[n− j + 1] is the noise K-vector at the j th tap point at time t = (n− j +
1)∆T .

Because the signal from the broadside direction arrives at all the receivers simulta-
neously, the K-vector of signals at the j th tap point takes the form:s[n− j + 1]

...
s[n− j + 1]

 = s[n− j + 1]

[1
...
1

]
= s[n− j + 1]1, (13.6)

and hence

s′[n] =


s[n]1

s[n− 1]1
...

s[n− j + 1]1
...

s[n− J + 1]1

 . (13.7)

The KJ-vector of the outputs at all the tap points is the sum of signal plus noise:

x′[n] = s′[n] + n′[n]. (13.8)

This KJ vector contains the K spatial samples and the J time samples of infor-
mation from the receivers.

The signal and the noises are assumed to be real, zero-mean, stationary, random
processes, and the signal is assumed to be independent of the noises:

E
{
s′[n]n′T [n]

}
= 0′. (13.9)

Their (unknown) [KJ ×KJ ] covariance matrices are denoted by:

E
{
x′[n]x′T [n]

}
, R′

x, (13.10)

E
{
n′[n]n′T [n]

}
, R′

n, (13.11)

E
{
s′[n]s′T [n]

}
, R′

s, (13.12)
(13.13)

Further, it is assumed that R′
xand R′

n are nonsingular (and hence positive definite).
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Writing the K weights at the jth tap point as w(j) =

w
(j)
1
...

w
(j)
K

, and stacking them

so as to create a KJ-vector, we have:

w ′ =

w(1)

...
w(J)

 =



w
(1)
1
...

w
(1)
K


...w
(J)
1
...

w
(J)
K




; (13.14)

w ′
[KJ×1] is the vector of weights which we wish to derive.

The output of the processor at the mth time sample is

y[n] = w ′T x′[n] (13.15)

and the mean output power—which we wish to minimise—is

E{y2[n]} = E
{
w ′T x′[n]x′[n]w ′H} = w ′TR′

xw
′. (13.16)

We now consider the constraints. In the narrow-band case of Chapter 11 we im-
posed a single constraint—viz, that the beam response in the beamsteered direction
must be unity (wHv = 1).

In the broadband case we can specify as well the frequency response in the beam-
steered direction. Let us refer to Figure 13.1. Because of the pre-steering, signals
appear synchronously at the inputs to the K transversal filters as s[n] and prop-
agate in step down the tapped delay lines and are then summed. As far as the
signal s[n] is concerned, we can collapse all the K receivers into one, and all the
weights as well, so that we have a single-channel receiver and tapped delay line, as
shown in Figure 13.2. Thus the signal is filtered by a transversal filter with weights
gj =

∑
k w

(j)
k , or

g =

[
g1
...

gJ

]
=


∑

k w1
k

...∑
k wJ

k

 . (13.17)

Note that the vector g is the impulse response of the filter. We need to select that
set of weights which gives the frequency response of the array in the beamsteered
direction.
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FIGURE 13.2. Equivalent delay line for the beamsteered direction

Let us define C ′(j) to be the KJ-vector which is comprised of a stack of K-
vectors, all of them 0 except the jth which is 1:

C
′(j)
[KJ ] =



0[K]
...

0[K]
1[K]
0[K]

...
0[K]


jth element (13.18)

The sum of the weights of the jth tap point is then
∑

k w
(j)
k = w ′TC ′ (j); to attain

the desired frequency response we require that

w ′T
[1×KJ ]C

′ (j)
[KJ×1] = gj , j = 1, . . . , J. (13.19)

These are the J constraints which we wish to impose. Defining the KJ×J matrix3:

C ′
[KJ×J ] =

[
C
′ (1)
[KJ ] · · · C

′ (J)
[KJ ]

]
=


1[K] 0[K] 0[K] · 0[K]
0[K] 1[K] · · ·
0[K] · · · ·
· · · 1[K] 0[K]

0[K] · · 0[K] 1[K]

 ,

(13.20)

the J constraints may be represented concisely by

C ′Tw ′ = g . (13.21)

The optimisation problem is to minimise the output power subject to these con-
straints:

Minimise
w

w ′TR′
xw

′ subject to C ′Tw ′ = g .

The solution is obtained as before but here we use J Lagrange multipliers. Define
the cost function:

ζ = w ′TR′
xw

′ + λT
[J×1](C

′Tw ′ − g), (13.22)

3Note that C ′ is of full rank. C ′ can be written concisely as C ′ = I [J] ⊗ 1[K], where ⊗
denotes the Kronecker product (see Appendix C)
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where λ[J ], is an unknown J-vector of Lagrange multipliers. Proceeding exactly
as in Chapter 11 (but working with larger – and real – vectors and matrices), we
have

2R′
xw

′ + C ′T λ[J ] = 0′, (13.23)

whence w ′
STAP = −1

2
R′−1

x C ′λ[J ]. (13.24)

Substitution in equation (13.21) gives4

λ[J ] = 2
(
C ′TR′

xC
′)−1

g , (13.25)

and hence the solution to the optimisation problem is

w ′
STAP = R′−1

x C ′ (C ′TR′
xC

′)−1
g . (13.26)

For the case in which J = 1, (13.26) reduces to the narrowband result derived in
Chapter 4.

13.3. Constrained broadband gradient descent algorithm

We next consider the case in which the covariance matrix R′
x is known and derive

the constrained gradient descent algorithm for the broadband case. The procedure
follows the same steps as for the narrowband case in Chapter 11, but here we have
KJ unknown real weights and J constraints). The gradient descent algorithm for
the m-th iteration is as usual

w ′(m + 1) = w ′(m)− µ
∂ζ

∂w ′

∣∣∣∣
w′=w′(m)

. (13.27)

where ζ is given by (13.22):

ζ = w ′TR′
xw

′ + λT
[J ](C

′Tw ′ − g).

Recalling that for real variables
∂

∂w
wTRw = 2Rw and (13.28)

∂

∂w
wTAz = Az (13.29)

(13.27) becomes

w ′(m + 1) = w ′(m)− µ
[
2R′

xw
′(m) + C ′λ[J ](m)

]
. (13.30)

We now impose the constraints C ′Tw ′(m + 1) = g to obtain

λ(m) = −2(C ′TC ′)−1C ′TR′
xw

′(m) +
1
µ

(C ′TC ′)−1C ′Tw ′(m)− (C ′TC ′)−1g .

(13.31)

Substituting equation (13.31) in (13.27):

w ′(m + 1) = w ′(m)− µP ′R′
xw

′(m) + C ′(C ′TC ′)−1g , (13.32)

4Because C ′ and R′
x are (by assumption) of full rank, the inverse exists.
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where P ′
[KJ×KJ ] = I ′ − C ′(C ′TC ′)−1C ′T is a projection matrix and is idem-

potent (i.e., P ′ 2 = P ′).

13.4. Stochastic constrained broadband LMS algorithm

(13.32) is the gradient descent algorithm which assumes that R
′
x, is known and

invariant. In practice we do not normally know R
′
x, need to estimate it. Pro-

ceeding along the same path as in Chapter 12 we derive the broadband stochas-
tic constrained LMS algorithm. We begin by replacing R′

x in (13.30) by R̂′
x ∼

x′(m)x′T (m) in (13.32):

ŵ ′(m + 1) = P ′ŵ ′(m)− µP ′x′(m)x′ T (m)ŵ ′(m) + C ′T (C ′TC ′)−1g .
(13.33)

Writing the beamformer output as ŷ(m) = ŵ ′T (m)x′(m), the algorithm is

ŵ ′(m + 1) = P ′ [ŵ ′(m)− µŷ(m)x′(m)
]
+ C ′(C ′TC ′)−1g . (13.34)

The initial weight vector is taken to be5

ŵ ′(0) = C ′(C ′TC ′)−1g . (13.35)

As in the narrowband case, some parameters—in this case, P ′ and C ′(C ′TC ′)−1g—
can be computed beforehand. We stress again that the stochastic constrained LMS
algorithm introduces noise into the system.

13.5. Overview

In this Chapter we have considered broadband signals and space-time adaptive pro-
cessing and derived the optimal broadband processor, the (deterministic) gradient
descent algorithm and the stochastic constrained LMS algorithm.

5w(0) satisfies the constraint C ′T w(0) = g .
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Summary

Narrowband Broadband

Optimum weight vector

minw[K]
wHRxw

subject to wHv = 1

ζ = wHRxw − λ(wHvs − 1)

− λ∗(vH
s w − 1)

wopt =
R−1

x vs

vH
s R−1

x vs

yopt = xHwopt

minw′
[K]

w′HR′
xw′

subject to C′T
[J×KJ ]w

′
[KJ ] = g[J ]

ζ = w′HR′
xw′

+ λT
[J ](C

′T w′ − g)

w′
opt = R′

xC ′(C ′T R′
xC′)−1g

yopt = x′T w′
opt

Gradient descent

w(m + 1) = w(m) − µg(w,m)

g(w,m) = Rxw(m) − λvs

w(m + 1) = P (I − µRx)w(m) +
vs

K

P = I − vsv
H
s

K

w′(m + 1) = w′(m) − µg′(w′,m)

g′(w′,m) = R′
xw′(m) − C ′λ[J ](m)

w′(m + 1) = P ′(I ′ − µR′
x)w′(m)

+ C ′(C ′T C ′)−1g

P ′ = I ′ − C ′C ′T

K

Stochastic constrained LMS

w(m + 1) = w(m) − µg(w,m)

g(w,m) = Rxw(m) − λvs

w(m + 1) = P [w(m) − µx(m)y∗(m)]

+
vs

K

P = I − vsv
H
s

K

w′(m + 1) = w′(m) − µg′(w′,m)

g′(w′,m) = R′
xw′(m) − C ′λ[J ](m)

w′(m + 1) = P ′[w′(m) − µy(m)x′(m)]

+ C ′(C ′T C ′)−1g

P ′ = I ′ − C ′C ′T

K



CHAPTER 14

ESTIMATION

14.1. Introduction

Many applications of array processing require knowledge of signal parameters,
such as its direction of arrival (DOA) or its power. Whilst the above are usually the
primary parameters to be estimated there are others that can be derived from the
beam outputs which can be used in further processing such as classification, track-
ing and localization. For example, in sonar, lines in the power spectrum of a beam
are commonly used to classify the sound source. Usually the signal parameters are
unknown and the process of estimating them is the subject of estimation theory. A
short review of its fundamentals is provided in Appendix D.

A key requirement of any estimator is that it is accurate and there are theoretical
limits to the accuracy with which any parameter can be estimated in practice. In-
deed since any practical estimator is a function of the received data which contains
noise it follows that any estimator is a random variable. Thus to fully characterize
the statistical properties of an estimator its probability density function should be
determined. Often this is intractable and only the bias and variance of an estimator
can be determined. Typically the variance will vary with the input SNR, array gain,
integration times and processing resolution.

For unbiased estimators an important quantity is the Cramer-Rao lower bound.
This is the result of a remarkable theorem that allows a lower bound for the variance
of any linear unbiased estimator of parameters to be determined. The practical
importance of this cannot be over stressed as it is an important design tool that
determines, given a particular SNR and set of processing parameters, the lowest
possible variance that can be achieved over a wide class of estimators. Knowing
this often determines whether the system and processing design will be adequate
for the task.

Important estimators are the maximum likelihood and least squares estimators. The
application of these to array processing and some properties of the resulting esti-
mators are presented.

14.2. Classical DOA Estimation Techniques

In this section some commonly used techniques for estimating the arrival direction
of a plance wave incident on an array of receivers are discussed.

172
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14.2.1. Steering in Angle.

A common direction finding technique with mechanically steering antenna is to
rotate the antenna and to estimate the DOA of the incident signal as the angle at
which maximum output power is obtained. This idea can readily be implemented
in array beamforming by forming multiple beams (see Chapter 6) and selecting the
angle of maximum beam power as the DOA. These beams can either be formed
simulataneously or sequentially depending on the computational power available.

One or several DOA’s can be estimated by this approach as illustrated in Figure
14.1 below for convential beamforming. However the approach is not limited to
the outputs of a convential beamformer− optimum beamformers could be used in-
stead. Figure 14.2 illustrates the advantage of using optimal instead of convential
processing. For this example two signals are incident upon an array and the DOA’s
are such that the difference of the DOA’s is less than the beamwidth of a conven-
tial beamforming. As can be seen each peak in the convential beamformer output
power is biased away from the true DOA by the presence of the other signal. How-
ever the optimal processor by virtue of its null steering ability can dramatically
reduce this bias. Thus the position of peaks in the optimal beamformer outputs
experience less bias than the corresponding peaks of the conventional beamformer
output power.
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FIGURE 14.1. Output of a conventional beamformer power for a 24
receiver linear array. There are three plane-wave arrivals from θs =
−30◦, 0◦and50◦ with SNRs of 5dB, 0dBand− 5dB respectively. d/λ =
1
2 .
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The accuracy of this approach is ultimately limited by the number and spacing of
the beams formed. This is illustrated in Figure 14.1 where the number of beams is
increased.
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FIGURE 14.2. Output of a conventional and optimum beamformer
powers for a 16 receiver linear array. There are two plane-wave arrivals
from θs = −15◦and0◦ with SNRs of 20and10dB respectively. d/λ = 1

4 .

14.2.2. Beam Interpolation.

In practice only a limited number of beams are formed–often only independent
beams are formed. In this siuation the separation of beams is usually significantly
greater than the desired DOA accuracy.

This problem is commonly solved by interpolating between beams. Several beams
around a beam with maximum (local) power are selected and a small curve fitted
to their powers–the peak of this curve is then taken as the DOA estimate. One
commonly used approach is quadrature interpolation using the beam with peak
power and the beam on each side of it. However, this approach can result in biased
estimates of the signal DOA.
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FIGURE 14.3. Output of a conventional beamformer power for a 15
receiver linear array. A single plane-wave of SNR 5dB incident on the
array from 18◦ and d/λ = 1

2 .

14.3. Fundamental Limits to Estimation

There exists a fundamental limit, known as the Cramer-Rao lower bound on the
accuracy of any unbiased estimator. This bound is derived from the Fisher Infor-
mation Matrix (FIM). Note that the parameters estimated could be a scalar quantity
such as DOA or power or they could be multivariate quantity such as frequency,
DOA and signal power or the vector of receiver locations in the case of an array
with uncertainty in its receiver positions.

14.3.1. Fisher Information Matrix.

A fundamental quantity in estimation theory is the Fisher Information Matrix, J ,
defined, for a random process with probability density function, p(x;α), by

(J )ij = Jij(α) , −E

{
∂2 ln(p(x;α))

∂αi∂αj

}
= −E

{
∂2Lx(α)
∂αi∂αj

}
(14.1)

where the x = [x1, x2, . . . , xN ]T are N samples of the random process and αT =
[α1 α2 · · ·αL] is the vector of L parameters characterizing the random process. The
function lx(α) = p(x;α) is called the likelihood function, and its logarithm,

Lx(α) , ln (p(x;α)) (14.2)
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is called the log-likelihood function. Using various identities the Fisher Information
Matrix can also be given by

Jij(α) = E

{
∂Lx(α)

∂αi
· ∂Lx(α)

∂αj

}
(14.3)

Note that the FIM is a symmetric, non-negative definite matrix.

For a complex vector α the Fisher Information Matrix is an Hermitian non-negative
definite matrix defined as

Jij(α) , E
{
∇αiLx(α) ∇α∗

j
Lx(α)

}
(14.4)

14.3.2. Cramer-Rao Lower Bounds.

Let α̂T = [α̂1, α̂2, . . . , α̂L] be any unbiased estimator of the parameters of the
random process. Define the covariance matrix, C α̂, of this estimator as

(C α̂)ij = E{(α̂i − αi)(α̂j − αj)} (14.5)

Under a regularity condition the Cramer-Rao lower bound states that covariance
matrix, C α̂, for any unbiased estimator satisfies

C α̂ − J−1(α) ≥ 0 (14.6)

where ≥ 0 means positive definite. (For proof see Appendix D).

When an estimator attains the Cramer-Rao lower bound it is said to be efficient.

Each diagonal term is of particular interest as it indicates a lower bound for the
variance of any unbiased estimator of that parameter. For the vector, α, of L real
parameters to be estimated, it follows from Equation (14.6), that the corresponding
Cramer-Rao inequality is

var(α̂`) ≥ [J−1]`` l = 1, 2, . . . , L (14.7)

For a real scalar, α, the Cramer-Rao inequality reduces to

E{|α̂− α|2} E

{∣∣∣∣∂ ln p(x;α)
∂α

∣∣∣∣2
}
≤ 1
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or

var (α̂) ≥ 1

E

{∣∣∣∂Lx(α)
∂α

∣∣∣2} (14.8)

and for a complex scalar α it becomes

var(α̂) ≥ 1
E {∇αLx(α) ∇α∗Lx(α)}

= − 1
E {∇α∇α∗Lx(α)}

(14.9)

An important application in array processing is when the Fourier transformed re-
ceiver outputs of an array of receivers can be modelled as correlated complex
Gaussian random variables with cross-spectral matrix Rx(f,α) - see Chapter 8.
Note, for clarity, that the dependence of the cross-spectral matrix on the signal pa-
rameters α has been explicitly shown. In this case the probability density function
is given by

p(x;α) =
1

πK |Rx(f,α)|
exp

(
−xH(f)R−1

x (f,α)x(f)
)

(14.10)

for the case where the Fourier transformed receiver outputs have zero mean. For
this case the Fisher Information Matrix (see [22]) reduces to

Jij(α) = Tr

[
R−1

x (f,α)
∂Rx(f,α)

∂αi
R−1

x (f,α)
∂Rx(f,α)

∂αj

]
= −Tr

[
∂R−1

x (f,α)
∂αi

∂Rx(f,α)
∂αj

]
(14.11)

In the presence of deterministic signals the Fourier transformed receiver outputs
will have non-zero means and the above expression is generalized to

Jij(α) = Tr

[
R−1

x (f,α)
∂Rx(f,α)

∂αi
R−1

x (f,α)
∂Rx(f,α)

∂αj

]
+ 2R

[
∂µH(f,α)

∂αi
R−1

x (f,α)
∂µ(f,α)

∂αj

]
(14.12)

where µ(f,α) is the vector of means.
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14.3.3. Application to DOA Estimation.

For N samples of a plane wave in uncorrelated receiver noise of signal to noise
ratio, SNR, incident upon an array of K receivers and an array length of L , the
CRLB for the variance of any unbiased estimator of β, the cone angle relative to
endfire, is given by

σ2
CRLB(β) =

12

4π2KSNR
(

L
λ

)2 sin2 β
(14.13)

***Assumptions underlying the above expression needs to be checked thru***

14.3.4. Bhattacharyya Lower Bound.

When an efficient estimator does not exist, it is possible to improve on the Cramer-
Rao bound, using an inequality due to Bhattacharyya [39, Chapter 3]. Consider
just the case of a scalar parameter α and define the (M ×M) matrix, B where

bjk = E

{
∂jLx(α)

∂αj

∂kLx(α)
∂αk

}
(14.14)

and

C = B−1 (14.15)

The Bhattacharyya bound on the error variance for unbiased estimators is

var(α̂) ≥ c11 (14.16)

For M = 1, the Cramer-Rao bound (14.9) is

var(α̂) ≥ 1
b11

=
1

E

{(
∂Lx(α)

∂α

)2
} (14.17)

For M = 2,

var(α̂) ≥ 1
b11

+
b2
12

b11(b11b22 − b2
12)

(14.18)

Since the second term is≥ 0 the Bhattacharyya bound is≥ the Cramer-Rao bound.

14.4. Statistical Estimation Techniques

Two statistical approaches to estimation are maximum likelihood and least squares.
They are discussed below.
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14.4.1. Maximum Likelihood Estimation.

The maximum likelihood estimator is
based on the following notion. Consider
a probability density function p(x;α)
which depends on an unknown determin-
istic scalar parameter α. In Figure 14.4.1
p(x;α) is sketched for several values
of α. Given an observed value x it is
requried to estimate α.

It is natural to pick that value of α for
which p(x;α) is greatest. This is called
the maximum likelihood estimate α̂ML.
The estimator is

ˆαML = arg
(
max

α
p(x;α)

)
= arg

(
max

α
Lx(α)

)
(14.19)

p(x|α
1
)

p(x|α
2
)

p(x|α
3
)

p(x|α
4
)

α
max likelihood

FIGURE 14.4. Illustrating max-
imum likelihood

where

Lx(α) , ln (p(x;α)) (14.20)

is the log-likelihood function introduced earlier. When Lx(α) is differentiable, α̂
is a root of the equation

∂

∂α
Lx(α) = 0 (14.21)

As an example of this method consider an array where

• the signal and noise are narrow-band, zero-mean gaussian random pro-
cesses;

• the cross-spectral matrix of the noise is known;
• the signal arrives as a plane wave-front from a known direction ks.

The problem is to estimate the signal power σ2
s(f). In the remainder of this exam-

ple, the dependence on frequency f is omitted for convenience. The probability
density function of the receiver outputs is

p(x;σ2
s) =

1
πK det(Rx)

exp
(
xHR−1

x x
)

(14.22)

where

Rx = Rn + σ2
sv(ks)vH(ks) (14.23)

The log-likelihood function is

Lx(σ2
s) = K lnπ − ln (det(Rx))− xHR−1

x x (14.24)
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The derivatives of the determinant and of the inverse of a matrix R are given by
(see (C.31) and (C.32))

∂ ln det(R)
∂α

= Tr
(
R−1 ∂R

∂α

)
and

∂R−1

∂α
= −R−1 ∂R

∂α
R−1.

Setting ∂Lx(σ2
s)/∂σ2

s = 0, gives

Tr
(
R−1

x v(ks)vH(ks)
)

+
∣∣xHR−1

x v(ks)
∣∣2 = 0

or

vH(ks)R−1
x v(ks) =

∣∣xHR−1
x v(ks)

∣∣2 (14.25)

Using (C.9) for the determinant of a partitioned matrix:

det(R + αuuH) = αuHR−1u det(R),

and Woodbury’s identity (C.14) gives

σ̂2
s =

∣∣xHR−1
n v(ks)

∣∣2
(vH(ks)R−1

n v(ks))2
− 1
vH(ks)R−1

x v(ks)
(14.26)

Writing

γ , vH(ks)R−1
n v(ks) (14.27)

the expectation is

E{σ̂2
s} =

vH(ks)R−1
n E{xxH}R−1

n v(ks)
γ2

− 1
γ

=
vH(ks)R−1

n (Rn + σ2
sv(ks)vH(ks))R−1

n v

γ2
− 1

γ

= σ2
s (14.28)

so the estimator is unbiased.

Using (B.19), it can be shown that

E
{(
aHxxHa

)2}
= 2

(
aHRxa

)2
(14.29)

and hence

var
(
σ̂2

s

)
= E

{
σ̂4

s

}
−
(
E
{
σ̂2

s

})2
=

(1 + σ2
sγ

2)2

γ2
(14.30)



14.4. STATISTICAL ESTIMATION TECHNIQUES 181

Differentiating with respect to σ2
s the Cramer-Rao lower bound can be derived:

∂Lx(σ2
s)

∂σ2
s

= −Tr
(
R−1

x

∂Rx

∂σ2
s

)
+ xHR−1

x

∂Rx

∂σ2
s

R−1
x x

= vH(ks)R−1
x v(ks)− |xHR−1

x v(ks)|2

=
1

1 + σ2
sγ

(
γ − vH(ks)R−1

n xxHv(ks)
1 + σ2

sγ

)
(14.31)

Using (14.29) and after a little manipulation it can be shown that

E

(
∂Lx(σ2

s)
∂σ2

s

)2

=
γ2

(1 + σ2
sγ)2

(14.32)

so the Cramer-Rao bound is

var(σ2
s) ≥

(1 + σ2
sγ)2

γ2
(14.33)

Referring to (14.30) it can be seen that the ML estimator attains the Cramer-Rao
lower bound and hence it is efficient.

14.4.2. Least Squares Estimation.

Least squares1 is a useful estimation technique when there is a linear relationship
between the unknown signal parameters α and the receiver outputs. This occurs
in array processing when L plane waves are incident upon an array from known
directions but their amplitudes are unknown. Considering the frequency domain as
discussed in Chapter 8.4, the receiver output vector can be written as

x̃(f) = V (f)s̃(f) + ñ(f) (14.34)

where the (K × L) array manifold matrix V is given by

V (f) =
[
v(k1)

... v(k2)
... · · ·

... v(kL)
]

(14.35)

and the L−vector s̃(f) is given by

s̃(f) = [s(k1) s(k2) · · · s(kL)]T (14.36)

where ñ(f) is additive noise with cross-spectral matrix Rn(f).

Now consider where, in a similar manner to Chapter 11.2, we have M independent
realisations of the receiver outputs, x̃(m)(f), for m = 1, 2, ...,M . Thus (1.34)

1For a brief review of least squares estimation refer to Appendix D.4
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generalizes to

x̃(m) = V s̃ + ñ(m) (14.37)

where, again, for consistency, the frequency dependence has been omitted.

The unknown parameters α are estimated by minimising the total weighted error
power for the block of data, i.e., by minimising

M∑
m=1

ñ(m)HR−1
n ñ(m) =

M∑
m=1

(
x̃(m)H − s̃HV H

)
R−1

n

(
x̃(m)H − V s̃

)
(14.38)

Differentiating with respect to the s(kj) and equating to zero results in the follow-
ing estimator

ˆ̃sLS =
(
V HV

)−1
M∑

m=1

V HR−1
n x̃(m) (14.39)

As shown in appendix D, the LS estimator is unbiased and the covariance of its
estimates is given by

E

{(
ˆ̃sLS − s̃

)(
ˆ̃sLS − s̃

)H
}

=

(
M∑

m=1

V HV

)−1

=
1
M

(
V HV

)−1
(14.40)

for the complex case. Note the typical 1
M reduction in variance from inefficient

averaging over M blocks of data.

Consider a special case of the above, i.e. estimating the amplitude of a determin-
istic plane wave in uncorrelated Gaussian receiver noise. The vector of receiver
outputs is given by

x̃(m) = s0v(ks) + ñ(m) (14.41)

where s0 ≡ s0(f) is a scalar unknown parameter to be estimated.

In this case the LS optimization function becomes

1
M

M∑
m=1

(
x̃(m) − s0v(ks)

)H
R−1

n

(
x̃(m) − s0v(ks)

)
(14.42)
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In Appendix A Section A.4.1, the condition 2 for the extremum of a real function
of complex variables is

∇s∗0
Lx̃(s0) = 2vH(ks)R−1 1

M

M∑
m=1

(
x̃(m) − s0v(ks)

)
= 0 (14.43)

so the estimate is3

ŝ0 =
vH(ks)R−1

n (f)x̃′

vH(ks)R−1
n (f)v(ks)

=
(

R−1
n (f)v(ks)

vH(ks)R−1
n (f)v(ks)

)H

x̃′ (14.44)

where

x̃′ =
1
M

M∑
m=1

x̃(m) (14.45)

This estimator is just a beamformer with weights

wCapon(ks) =
R−1

n (f)v(ks)
vH(ks)R−1

n (f)v(ks)
(14.46)

Note that the maximum likelihood estimator given by (14.46) is identical to the
MVDR beamformer of (10.22) for plane-wave signals. It is remarkable that the
same result using a totally different approach is obtained. Observing that E{x̃′} =
s0v(ks), the expected value of ŝ0 is

E{ŝ0} =
(

vH(ks)R−1
n

vH(ks)R−1
n v(ks)

)
s0v(ks)

= s0. (14.47)

Hence this estimator is unbiased. The variance of the estimate is

var(ŝ0) = E{|ŝ0|2} − |E{ŝ0}|2

= E

{
vH(ks)R−1

n x̃′ x̃′HR−1
n v(ks)

(vH(ks)R−1
n v(ks))2a

}
− |s0|2

=
vH(ks)R−1

n E{x̃′ x̃′H}R−1
n v(ks)

(vH(ks)R−1
n v(ks))2a

− |s0|2 (14.48)

On the assumption that the noise is uncorrelated from block to block, i.e.,

E
{
ñ(m)ñ(m)H

}
= Rnδmn (14.49)

it follows that

E{x̃′ x̃′H} =
1
M
Rn + |s0|2v(ks)vH(ks), (14.50)

and thus the variance is given by

var(ŝ0) =
1

MvH(ks)R−1
n v(ks)

. (14.51)

2This is a necessary but not sufficient condition.
3The approach is due to Capon ([6]) and the resulting processor often called the Capon estima-

tor. See Chapter 10.7



14.4. STATISTICAL ESTIMATION TECHNIQUES 184

Now consider the Cramer-Rao bound. The log-likelihood function is

Lx̃(s0) = −K ln(π)− ln (det(Rn))−
M∑

m=1

(
x̃(m) − s0v(ks)

)H
R−1

n (f)
(
x̃(m) − s0v(ks)

)
(14.52)

so

∇s0∇s∗0
Lx̃(s0) = −MvH(ks)R−1

n (f)v(ks) (14.53)

and the Cramer-Rao bound is

E{|s0|2} − |E{s0}|2 ≥
1

MvH(ks)R−1
n (f)v(ks)

(14.54)

The right-hand side of (14.54) is identical to that of (14.51), so in this case the least
squares estimator attains the Cramer-Rao lower bound.

Note that assuming the noise n has a zero-mean multivariate complex normal dis-
tribution

p(n) =
1

πK det(Rn)
exp{−nHR−1

n n} (14.55)

then

p(x̃(m); s0) =
1

πK det(Rn)
exp{−

(
x̃(m) − s0v(ks)

)H
R−1

n

(
x̃(m) − s0v(ks)

)
}

(14.56)

Assuming statistical independence of the noise from observation to observation,
the probability density function of the block of data is given by

p
(
x̃(1), x̃(2), . . . , x̃(m);α

)
=

M∏
m=1

p(x̃(m);α)

=
1

πK det(Rn)
exp

{
−

M∑
m=1

(
x̃(m) − s0v(ks)

)H
R−1

n

(
x̃(m) − s0v(ks)

)}
(14.57)

Thus maximizing the log-likelihood function in this case is identical to minimizing
the least squares, i.e.,

ŝoML = ŝoLS (14.58)
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14.5. Crossed dipoles

Here a rather unusual array is consid-
ered: it has three receivers, effectively
collocated at the one point. a One of
the receivers is omnidirectional; the
other two are directional, with responses
proportional to sin θs and cos θs respec-
tively, where θs is the angle of arrival
of a plane-wave signal in the horizontal
plane; these two directional receivers are
named ‘N-S’ and ‘E-W’, respectively.

This type of array has been used in ra-
dio direction-finding and also in sonar
for submarine detection and location.
The directional receivers can be realised
physically in a number of ways; for this
example, it suffices that they be modelled
by closely spaced dipoles.

aThat is to say, the phase centres of the receivers
are at the same point.

+

−

+−

Omnidirectional

N−S dipole

E−W dipole

FIGURE 14.5. Polar responses

A dipole can be considered to comprise two receivers whose outputs are subtracted,
as shown in Figure 14.5.
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x21

x22

d � λ

+

−
+

Receiver 2
(N-S dipole)
x21 − x22

output ∝ sin θs

x31 x32

d � λ

Omni

+−
+

Receiver 3
(E-W dipole)
x31 − x32

output ∝ cos θs

θs

FIGURE 14.6. Crossed dipoles

Again in this example the dependence on frequency f shall be omitted. For a single
signal in the absence of noise, the vector of receiver outputs takes the form

x ≡ x̃(f) = s

[
1

α(f) sin θs
α(f) cos θs

]
,

= sv(f, θs), (14.59)

where s ≡ s(f) is the spectral component of the signal at the omnidirectional
receiver, α ≡ α(f) is the sensitivity of the directional receivers at frequency f ,
and

v ≡ v(f, θs) =
[ 1

α sin θs
α cos θs

]
. (14.60)

For the N-S dipole, when only signal is present, define

x2 = x21 − x22

∝ s
(
eiπd sin θs/λ − e−iπd sin θs/λ

)
∝ sin θs ford � λ. (14.61)

Similarly, x3 ∝ cos θs ford � λ.
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Next consider the case in which

• the ambient noise is isotropic in the horizontal plane,
• receiver noise is uncorrelated,
• signals and noises are narrow-band zero-mean gaussian random variables,

and
• signal and noises are independent of one another.

Using the same subscript notation as before, the outputs of the two dipoles due to
noise alone are

n2 = n21 − n22

and

n3 = n31 − n32 (14.62)

then

E{n1n
∗
2} = E{n1n

∗
21} − E{n1n

∗
22} = 0

and

E{n2n
∗
3} = E{n21n

∗
31} − E{n21n

∗
32} − E{n22n

∗
31}+ E{n22n

∗
32} (14.63)

From the symmetry of the element positions, it is evident that, for isotropic and
receiver noise,

E{n21n
∗
31} = E{n21n

∗
32} = E{n22n

∗
31} = E{n22n

∗
32}

so

E{n2n
∗
3} = 0 (14.64)

Similarly E{n1n
∗
2} = 0 = E{n1n

∗
3} so the cross-spectral matrix for isotropic

ambient noise plus receiver noise is diagonal:

Rn = σ2
n diag{ 1 ζ2 ζ2 }, (14.65)

where σ2
n , (σ2

a + σ2
r ) and σ2

a and σ2
r are the ambient and receiver noise levels,

respectively, and

ζ2 =
σ2

r + α2σ2
a

σ2
r + σ2

a

. (14.66)

The signal-to-noise ratios from the omnidirectional and directional receivers are,
respectively

µo =
σ2

s

σ2
n

(14.67)

and

µd =
α2σ2

s

ζ2σ2
n

(14.68)
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Noting that

E{x1x
∗
2} = α σ2

s sin θs

E{x1x
∗
3} = α σ2

s cos θs

E{|x1|2} = σ2
s + σ2

n (14.69)

one is led intuitively to the following approach in estimating θs when σ2
s � σ2

n :

• collect a large number M of receiver samples {x(1), x(2), · · · , x(M)},
• estimate the cross-spectral matrix R̂x = 1

M

∑M
m=1 x

(m)x(m)H ,

• take ασ2
s sin θ̂s ≈ [R̂x]12

[R̂x]11
and ασ2

s cos θ̂s ≈ [R̂x]13
[R̂x]11

, respectively,

• from their ratio calculate tan θ̂s and hence θ̂s. (The quadrant for tan θ̂s is
resolved from the signs of sin θ̂s and cos θ̂s.)

Next expressions for the maximum likelihood estimator and for the Cramer-Rao
lower bound are derived.

The cross-spectral matrix of the receiver outputs is then

Rx = Rn + σ2
svv

T (14.70)

The probability density function of the receiver outputs is

p(x) =
1

π3 det(Rx)
exp{−xHR−1

x x} (14.71)

and the log-likelihood function is

Lx(θs) = −3 ln π − ln det(Rx)− xHR−1
x x. (14.72)

In what follows primes (′) are used to denote derivatives ∂
∂θs

:

v ′ =
∂v

∂θs
,

v ′′ =
∂2v

∂θ2
s

, etc (14.73)

∂Lx(θs)
∂θs

= −Tr
(
R−1

x R′
x

)
+ xHR−1

x R′
xR

−1
x x (14.74)

It is not difficult to show that

vTR−1
n v =

1
σ2

s

(µo + µd)

vTR−1
n v ′ = 0, (14.75)

and hence that
∂Lx(θs)

∂θs
=

1
1 + σ2

s(µo + µd)
xH

(
R−1

n v ′vTR−1
n + R−1

n vvTR−1
n

)
x

(14.76)
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To obtain the maximum likelihood estimator, set ∂Lx(θs)
∂θs

= 0. The resulting equa-
tion can be expressed as a quartic in tan θs

2 but does not appear to have a solution
in closed form, so a numeric approach would be needed to find its roots. The max-
imum likelihood estimator would be the root corresponding the largest maximum
of Lx.

For the Cramer-Rao lower bound use the following relationships which can be
readily derived from (14.72):

vTR−1
n v ′ = v ′TR−1

n v = 0

vTR−1
n v ′′ = v ′′TR−1

n v = −σ2
s µd

v ′TR−1
n v ′ = σ2

s µd (14.77)

these are then used to give

var(θ̂) ≥
(

E

{
∂2Lx(θs)

∂θ2
s

})−1

≥ σ2
s

(
1 + µo + µd

2µd(µo + µd)

)
(14.78)



CHAPTER 15

SUBSPACE METHODS

15.1. Introduction

Eigenvalues and eigenvectors are important in many physical systems. Typically,
an eigenvector corresponds to a natural mode of oscillation and its corresponding
eigenvalue gives the intensity of that oscillation. Not surprisingly, they also play
an important part in beamforming.

In this Chapter we work in the frequency domain and introduce beamforming using
the so-called subspace or eigenanalysis methods. These are based on the notion
that signals and noise are usually independent of one another, and so span different
subspaces. If we can find these subspaces, then it is possible to distinguish clearly
between the two.

Some revision notes on eigenvalues and eigenvectors are provided in Appendix C;
here we briefly highlight some essential points.

As in earlier Chapters, the cross-spectral matrix of the receiver outputs, Rx, plays
a central role. We shall assume that Rx is non-singular, and as a consequence its
eigenvalues will all be positive. We shall arrange the eigenvalues in descending
order:

λmin ≡ λ1 ≥ λ2 ≥ · · · ≥ λK ≡ λmax. (15.1)

This ordered set of eigenvalues of a cross-spectral matrix is called its eigenspec-
trum. Let {qmax ≡ q1, · · · , qK ≡ qmin} be the corresponding eigenvectors, and
let us arrange these eigenvectors as the columns of the K ×K matrix:

Q = [q1 : q2 : · · · : qK ] . (15.2)

The eigenvectors are by convention scaled to be orthonormal:

qH
i q j = δij, (15.3)

δij = 1, i = j,

= 0, i 6= j.

Q is a unitary matrix (i.e., QQH = I ), and it is readily seen that

Rx = QΛQH , (15.4)

190
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where Λ is the diagonal matrix:

Λ =


λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λK

 (15.5)

Any subset of the eigenvectors spans a subspace which is orthonormal to the sub-
space spanned by the remaining eigenvectors.

15.2. Uncorrelated noise only

Let us begin by considering the simple case in which the noises are all independent
and identically distributed. The cross-spectral matrix then takes the form:

Rn(f) = σ2
n(f)I . (15.6)

In this case, all the eigenvalues are the same (λk = σ2
n ∀ k) and the eigenvectors

are not unique (Rn(f) = σ2
n(f)QQH for any unitary matrix Q).

15.3. Single signal and uncorrelated noise

Next take the case in which there is a single signal plane-wave arrival with power
σ2

s(f) and arriving from a direction corresponding to the steering vector v(ks),
with noises again independent and identically distributed; the cross-spectral matrix
is then:

Rx(f) = σ2
s(f)v(ks)vH(ks) + σ2

n(f)I . (15.7)

It can easily be shown1 that

det(Rx(f)− (Kσ2
s(f) + σ2

n(f))I ) = 0. (15.8)

We conclude that one eigenvalue is Kσ2
s(f) + σ2

n(f). It can readily be ascertained
that the corresponding eigenvector is2

qs =
v(ks)√

K
. (15.9)

Similarly, since det(Rx(f) − σ2
n(f)I ) = 0, all the remaining eigenvalues are

equal to σ2
n(f). Hence

λ1 = Kσ2
s(f) + σ2

n(f) and

λk = σ2
n(f), k = 2, · · · ,K.

Thus we can conveniently express Rx(f) in terms of partitioned matrices:

1The determinant of a nonsingular matrix plus a dyad is given by (see (C.9)):

det(R − cvvH) = det(R)(1− cvH R−1v)

2In general, if the plane-wave signals are strong compared to other forms of noise, the eigen-
vectors of the signal subspace will be approximately proportional to the signal wavevectors.
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Rx =
[

v(ks)√
K

... F

] Kσ2
s + σ2

n

... 0
· · · · · ·
0

... σ2
nI

[ vH(ks)√
K· · ·

F H

]
, (15.10)

where F is some [K × (K − 1)] matrix whose columns are orthonormal:

F HF = I [(K−1)×(K−1)]. (15.11)

Note that

• only the first (the largest) eigenvalue is related to the signal;

• its eigenvector is proportional to the signal arrival vector v(ks);

• the single signal vector defines a one-dimensional subspace called the
signal subspace;

• the remaining eigenvectors, which constitute F , span the noise subspace;

• the signal arrival vector v(ks) is orthogonal to the noise subspace:

F Hv(ks) = 0[K−1], (15.12)

where 0[K−1] denotes a (K − 1)−vector of zeros.

15.4. L signals in uncorrelated noise

We can extend these results to the case in which there are L < K independent
signal sources and uncorrelated additive noise σ2

n(f)I .

Recall from (B.22) that the cross-spectral matrix of the receiver outputs can be
expressed as

Rx(f) = V S(f)V H + σ2
nI , (15.13)

where [S ]i,j = E
{
s̃i(f)s̃∗j (f)

}
and the matrix of steering vectors

V = [v(k1) : v(k2) : · · · : v(kL)] . (15.14)

In general these signals need not be independent, but we shall consider them to be
so, in which case S is diagonal:

S(f) =


σ2

1(f) 0 · · · 0
0 σ2

2(f) 0
...

. . .
...

0 0 · · · σ2
L(f)

 (15.15)
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V S(f)V H is of rank L < K; it can be expressed in terms of its non-zero eigen-
values as follows:

[V S(f)V H ][K×K] = E [K×L] Λs [L×L] E
H
[L×K ] (15.16)

It is easy to show that the cross-spectral matrix Rx(f) then has the following
eigen-decomposition:

Rx(f) =
[
E

... F

] Λs + σ2
nI

... 0
· · · · · ·
0

... σ2
nI

[ EH

· · ·
F H

]
, (15.17)

where the columns of E [K×L] and F [K×(K−L)] are the eigenvectors of Rx(f).

In this more general case, again we again have a signal subspace defined by the
signal vectors V and a noise subspace defined by the eigenvectors F .

This is illustrated in the adjacent sketch
for the simple case of a linear array
with three receivers and two independent
signal arrivals. The signal arrival vectors,
v1 and v2, define the signal subspace
which is orthogonal to the noise subspace
q3.

We introduce here the concept of the
array manifold which is defined as the
locus of all steering vectors as {θ, φ} is
varied. For a linear array it is a curve in
2K−dimensional space but in general it
is a surface.

The array manifold for this linear ar-
ray intersects the signal subspace at the
points v1 and v2 as sketched.

q
1

q
2

q
3

v
1

v
2

Signal subspace

Noise subspace

Array manifold

FIGURE 15.1. Illustrating sub-
spaces and manifold

Note that:

• the L largest eigenvalues can be used to determine the signal subspace;

• the remaining K − L eigenvalues define the noise subspace;

• E [K×L] and F [K×(K−L)] are orthogonal: EHF = 0;

• EEH + F F H = I .
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Let us define matrix

P , F F H =
K∑

`=L+1

q `q
H
`

P is a projection operator: for any vector x, the projected vector P x lies in the
noise subspace.

We can express P in terms of the [K × L] matrix V of steering vectors(15.14):

P = I − V V † (15.18)

where the [(K − L) ×K] matrix V † is the Moore-Penrose pseudo-inverse of V
(see (C.10.3))3.

P is Hermitian symmetric (P H = P ) and idempotent (i.e., P 2 = P ).

If V is of full rank,

V † = (V HV )−1V H (15.19)

and P = I − V (V HV )−1V H . (15.20)

We shall use these results in following sections.

15.5. Estimating the direction of arrival

15.5.1. Introduction.

Subspace techniques can be used to estimate the directions of arrival of L plane
waves incident on the array. Such eigenanalysis methods are based on estimating
the number of signal sources and then partitioning the cross-spectral matrix into
signal and noise subspaces.

It was mentioned in Section 15.4 that, when the noises are independent of one
another, the largest L eigenvalues correspond to the signal subspace.

3In fact, (I − V V −) is also a projection operator onto the noise subspace, where V − is any
generalised inverse of V .
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Rx(f) = QΛQH , (15.21)

where Λ =



λ1 · · · 0 |
...

. . . 0 | 0
0 λL |
−− −− −− −− −− −−

| λL+1 · · · 0

0 | . . .
| 0 λK


(15.22)

=

 ΛSignal subspace
... 0

· · · · · ·
0

... ΛNoise subspace

 ,

and Q =

 q1 · · · qL︸ ︷︷ ︸
Signal subspace

... qL+1 · · · qK︸ ︷︷ ︸
Noise subspace

 (15.23)

=

 E [K×L]︸ ︷︷ ︸
Signal subspace

... F [K×(K−L)]︸ ︷︷ ︸
Noise subspace

 .

Once the partitioning has been effected, we can apply one of several methods of
estimating the arrival vectors of the signal sources4.

15.6. Pisarenko’s method

Pisarenko’s approach[32], although not particularly useful in practice, is nonethe-
less interesting because it introduces other, more practical, subspace methods.

It is assumed here that there are L = K − 1 arrivals and that their steering vectors
v(θj), j = 1, · · · ,K − 1 are linearly independent5. There will then be only one
‘noise eigenvector’, qK ≡ qmin. From (15.12),

vH(θj)qK = 0, j = 1, · · · ,K − 1.

A plot of the function

pPisarenko =
1

|vH(θ)qK |2
(15.24)

4Here we do not distinguish between wanted signals and unwanted interference: we only seek
to separate signal sources from receiver and ambient noise.

5We confine ourselves for simplicity to azimuthal angles θj but, as pointed out earlier, we can
simply extend the process to (θj , φj).
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will exhibit spikes, theoretically infinite, whenever θ equals one of the signal di-
rections θj . This function will thus serve as an estimator of the directions of arrival
of the signals6. In practice L will usually not equal K−1 and the Pisarenko method
then will give false peaks.

15.7. Multiple Signal Classification (MUSIC)

A popular technique, called Multiple Signal Classification (MUSIC)[36], is a ma-
jor improvement on the Pisarenko method.

Recall that the array manifold was defined as the locus of v(θ) as θ is varied. If
we project v(θ) onto the noise subspace, its vector component in that subspace is
given by

P v(θ) =
K∑

`=L+1

q `q
H
` v(θ), (15.25)

which is zero when θ = θ`, ` = L + 1, · · · ,K.

Using the fact that P is Hermitian symmetric and idempotent, the Euclidean norm
of the projected vector in the noise subspace is

vH(θ)P HP v(θ) = vH(θ)P v(θ) (15.26)

=
K∑

`=L+1

vH(θ)q `q
H
` v(θ) (15.27)

=
K∑

`=L+1

|vH(θ)q `|2. (15.28)

The MUSIC algorithm plots the reciprocal of the Euclidean norm as a function of
θ – i.e., it traverses the array manifold.

pMUSIC =
1

K∑
`=L+1

|vH(θ)q `|2
(15.29)

The peaks of pMUSIC, theoretically infinite, indicate the signal arrival directions
{θ`}.

6The heights of the peaks do not indicate signal power.
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FIGURE 15.2. Steered beamformer outputs for MUSIC and Optimal processors,
for a linear array of 15 receivers spaced half a wavelength apart. There are two
arrivals, both at φs = 90◦, and from horizontal angles θs = −60◦ and θs = +30◦,
and SNRs of −10dB and 0dB respectively.

This function is shown plotted in Figure 15.7 for the case of two signals, at −60◦

and 30◦, with amplitudes of −10dB and 0dB respectively, and uncorrelated noise
of amplitude 0dB. For comparison, the output of the optimal (MVDR) beamformer
is also shown.

As expected, the output of the MUSIC processor shows large, precise peaks in
the directions of the signals7. When the model assumed for the noise accurately
reflects the physical world, use of the MUSIC method (see (15.7)) gives a more
precise estimate of position than does the optimal processor (15.21).

It is stressed that this subspace processor by itself only provides an estimate of
signal direction but – unlike the conventional and optimal beamformers – not of
signal strength. However, signal strength can be estimated in a straightforward
manner using one of several techniques.

7It is important not to confuse precision with accuracy: an estimate can be very precise – defined
to many significant figures – but inaccurate.
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15.8. Eigenvector method

Recall (see 10.9.3) that the output of the MVDR beamformer can be used as an
estimator of the direction of signal arrivals by calculating

pMVDR(θ) =
1

vH(θ)R−1
x (f)v(θ)

. (15.30)

The inverse of the matrix Rx(f) of (15.21) is8

R−1
x = Q


λ−1

1 0 · · · 0

0 λ−1
2

...
...

. . . 0
0 · · · 0 λ−1

K

QH . (15.31)

Substituting (15.31) in (15.30) gives:

pMVDR(θ) =
1

K∑
i=1

λ−1
i |vH(θ)q i|

2

(15.32)

=
1

L∑
i=1

λ−1
i

∣∣vH(θ)q i

∣∣2+︸ ︷︷ ︸
SIGNAL SUBSPACE

K∑
i=L+1

λ−1
i

∣∣vH(θ)q i

∣∣2
︸ ︷︷ ︸

NOISE SUBSPACE

.

When the noise is uncorrelated, λi = σ2
n, i = L + 1, · · · ,K, and the second term

in the denominator of (15.32) would, except for a scale factor of σ2
n, be the same

as that of the MUSIC estimator.

This has led to the suggestion[21] to use just the second term in the denominator:

p EigenMethod(θ) =
1

K∑
i=L+1

λ−1
i |vH(θ)q i|

2

. (15.33)

This is called the Eigenvector method. It is similar to MUSIC:

• the directions of arrival are indicated by very sharp peaks;
• there is no indication of the levels of the signals;
• it relies on being able to separate signal and noise subspaces.

BEx 10

8This follows directly from the fact that the matrix of eigenvectors Q = [E |F ] is unitary:
QQH = I .
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15.9. Estimating the number of signals

15.9.1. Introduction.

To apply these subspace techniques successfully, it is necessary to decide how
many signals are present in order to be able to partition the cross-spectral matrix
correctly.

Figure (15.9.1) shows a plot of the 15 eigenvalues, in rank order, for the cross-
spectral matrix of the output of a linear array of 15 equi-spaced receivers. There
are four signals present, each of strength 0dB, and uncorrelated receiver noise of
strength 0dB.

In this rather idealised case, the eigenvalues associated with the noise can easily be
distinguished from those associated with signal.

0 5 10 15
10

0

10
1

10
2

Signal subspace

Noise subspace

FIGURE 15.3. Linear array, 15
receivers uniform spacing d =
λ/2, 4 arrivals all with SNR =
0dB. Noise and signal subspaces
are easily distinguishable
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−2

10
−1

10
0

10
1

FIGURE 15.4. Linear array,
15 receivers uniform spacing
d = λ/4, 4 arrivals all with
strength −10dB, receiver noise
0dB, spherically isotropic ambi-
ent noise 0dB. Noise and signal
subspaces difficult to separate

Figure (15.9.1) shows a similar plot for the same array, with receivers spaced λ/4
apart. There is uncorrelated receiver noise of strength −20dB and again there are
four signals present, each of level−10dB. In addition, there is spherically isotropic
ambient noise of strength 0dB. The estimated cross-spectral matrix R̂x is the av-
erage of 100 samples.

The signal and noise subspaces are now difficult to separate. By eye, one might
decide that there are present 8 or more signals, when in reality there are only 4.

It is not satisfactory to rely solely on human judgement to give estimates of the
number of signals present, so efforts have been made to develop mathematical
techniques to assist in the decision. Two have been shown to be effective: the A
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Information Criterion (AIC) and Minimum Description Length (MDL) criterion.
These take into account the distribution of noise and the number of samples used
to estimate the cross-spectral matrix. The results are stated below without proof.

15.9.2. AIC technique.

For normal distributions the AIC technique calculates a function AIC(L) :

AIC(L) = −M(K − L) ln


(

K∏
`=L+1

λ̂`

)1/(K−L)

1
(K−L)

K∑
`=L+1

λ̂`

+ L(2K − L + 1)

(15.34)

The number of sources is taken to be that value of L that minimises AIC(L).

In (15.34), {λ̂`, ` = L + 1, · · · ,K} are the K − L smallest eigenvalues of the es-
timated cross-spectral matrix R̂x and M is the number of samples used in making
that estimate. As before, K is the number of receivers. The term in large paren-
theses is the ratio of the geometric and arithmetic means of the K − L smallest
eigenvalues.

15.9.3. MDL technique.

The function to be minimised in the case of the MDL criterion is very similar:

MDL(L) = −M(K − L) ln


(

K∏
`=L+1

λ̂`

)1/(K−L)

1
(K−L)

K∑
`=L+1

λ̂`

+
L(2K − L + 1)

2
ln(M)

(15.35)

Each of these techniques has advantages and disadvantages, depending on the ac-
tual application.
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FIGURE 15.5. Estimating the
number of sources using AIC
and MDL techniques. Linear ar-
ray, 15 receivers uniform spac-
ing d = λ/2, 4 arrivals all with
SNR = 0dB.
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FIGURE 15.6. Steered beam-
former output for MUSIC and
optimal processors.

15.9.4. Some results.

Figure 15.9.3 shows a plot of AIC(L)
and MDL(L) for the example of Fig-
ure 15.9.1 where the signal and noise
subspaces are easily separable. Both
techniques correctly give the number of
sources as 4.
For this same case, Figure 15.9.3 shows
the steered beamformer output for MU-
SIC and for the optimal processor. Again
we find that, when the model accurately
represents the real situation, subspace
methods perform well.
However, when the number of signal
sources is not estimated correctly, these
two subspace methods give misleading
results.
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FIGURE 15.7. Plots of AIC(L)
and MDL(L). Linear array,
15 receivers uniform spac-
ing d = λ/4, 4 arrivals all
with strength −10dB, receiver
noise 0dB, spherically isotropic
ambient noise 0dB.
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Consider the case corresponding to Figure 15.9.1. This is a situation in which the
noise and signal subspaces are not easily separable, and both the AIC and MDL
methods overestimate the number of sources, picking 10 as shown in Figure 15.9.4.

If we accept that estimate of 10, quite poor results follow. The resulting steered
beamformer output for MUSIC is shown in Figure 15.9.4, together with the corre-
sponding plot for the optimal beamformer. Also shown is what would have resulted
if somehow the MUSIC algorithm could have been used with the true number of
sources (4). The true positions and levels of the signals are indicated by *. It is
noteworthy that, even when the number of signals is correctly chosen, there is a
significant error in the estimate of position for one of the signals (and the optimal
beamformer makes a similar error).
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FIGURE 15.8. Steered beamformer output for MUSIC with correct and incorrect
estimate of number of sources. Linear array, 15 receivers uniform spacing d =
λ/4, 4 arrivals all with strength −10dB, receiver noise 0dB, spherically isotropic
ambient noise 0dB.

15.10. ESPRIT

15.10.1. Concept.

This algorithm, originally proposed by Roy [30], is an acronym for Estimation of
Signal Parameters via Rotational Invariance Principles. As the name suggests,
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it estimates signal arrival direction by exploiting the rotational invariance of the
signal subspaces of subsets of the array receivers. There are several versions of
ESPRIT. Here we consider two: Least-squares (LS) and Total least-squares (TLS).

To illustrate the concept, consider a uniform linear array of K receivers spaced
d apart. We can select any pair of identical sub-arrays such as the two examples
shown in Figure 15.9, with the second sub-array shifted k′ receivers to the right.

t t t t t t t p p p p t t t t t t t
Full array: K receivers, spacing = d

t t t t t t t p p p p t t t t t t1 t t t t t t t p p p p t t t t t t2 d′�-

(a) Sub-arrays: displacement d′ = d, k′ = d′/d = 1, K ′ = K − 1 receivers

t t t t t p p p p t t t t t1 t t t t t p p p p t t t t t2 d′� -

(b) Sub-arrays: displacement d′ = 3d, k′ = d′/d = 3, K ′ = K − 3 receivers

FIGURE 15.9. Illustrating matched sub-arrays

Recall from 8.19 that the receiver output can be modelled as follows: 9

x(ks) = V s(ks) + n. (15.36)

Consider a uniform linear array with L signals incident upon it from directions
θ`, ` = 1, · · · , L < K ′. V then takes the form 10

V = [v1 : v2 : · · · : vL] =


1 1 · · · 1
z1 z2 · · · zL
z2
1 z2

2 · · · z2
L

...
...

...
...

zK−1
1 zK−1

2 · · · zK−1
L

 ,

where z` = exp(2πid sin θ`/λ).

In what follows, we assume that the columns of V are independent.

9For brevity we omit the explicit dependence on frequency f .
10For a uniform linear array, V is a so-called Vandermonde matrix.
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Let B1 and B2 be the selection matrices to generate the sub-arrays from the full
array. For the examples shown in Figure 15.9, we have

(a) B1 =

 1 0 · · · 0 0
0 1 0 0
...

. . .
...

...
0 0 · · · 1 0

 =
[
I (K−k′)×(K−k′)

... 0(K−k′)×L

]

B2 =

 0 1 · · · 0
0 1 0
...

...
. . .

0 0 · · · 1

 =
[
0(K−k′)×L

... I (K−k′)×(K−k′)

]

(b) B1 =

 1 0 · · · 0 0 0 0
0 1 0 0 0 0
...

. . .
...

...
...

...
0 0 · · · 1 0 0 0

 =
[
I (K−3)×(K−3)

...0(K−3)×L

]

B2 =

 0 0 0 1 0 · · · 0
0 0 0 0 1 0
...

...
...

...
. . .

...
0 0 0 0 0 · · · 1

 =
[
0(K−3)×L

... I (K−3)×(K−3)

]

(15.37)

The outputs of the sub-arrays are

x1 = V 1s + n1, (15.38)
and x2 = V 2s + n2, (15.39)

where V j = B jV , nj = B jn, j = 1, 2,

with cross-spectral matrices

Rx1x1 = E{x1x
H
1 } (15.40)

and Rx2x2 = E{x2x
H
2 }.
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Consider the sub-arrays in Figure 15.9 (in which the second sub-array is displaced
by k′ receivers to the right relative to the first):

V 1 =


1 1 · · · 1
z1 z2 · · · zL
z2
1 z2

2 · · · z2
L

...
...

...
...

zK−k′−1
1 zK−k′−1

2 · · · zK−k′−1
L .



and V 2 =


z1

k′ z2
k′ · · · zk′

L

zk′+1
1 zk′+1

2 · · · zk′+1
L

zk′+2
1 zk′+2

2 · · · zk′+2
L

...
...

...
...

zK−1
1 zK−1

2 · · · zK−1
L .



=


1 1 · · · 1
z1 z2 · · · zL
z2
1 z2

2 · · · z2
L

...
...

...
...

zK−1
1 zK−1

2 · · · zK−1
L




zk′
1 0 0 · · · 0
0 zk′

2 0 · · · 0
0 0 zk′

3 · · · 0
...

. . .
...

0 0 0 · · · zk′
L


= V 1Φ,

where Φ , diag(zk′
` ) contains all the information on the directions of arrival

{θ1, θ2, · · · , θL}. This result can be generalised to any pair of matched sub-arrays,
with appropriate definition of the diagonal matrix Φ. In its most general form the
elements of Φ are

z` = exp
(2πi

λ

(
d′x sin θ` sinφ` + d′y cos θ` sinφ` + d′z cos`

) )
,

= exp(ikT
` d

′) (15.41)

where d′ = [d′x d′y d′z]
T is the displacement vector between the phase centres of

the two sub-arrays.

Let E1 and E2 be the (K ′ × L) matrices whose column vectors are the eigenvec-
tors of Rx1x1 and Rx2x2 respectively. Because E1,E2 and V all span the same
signal subspace, there exists an orthonormal (L× L) matrix T such that

E1 = V 1T

and E2 = V 2T = V 1ΦT .

(15.42)

15.10.2. Least-squares ESPRIT.
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Defining ΨLS , T −1ΦT , we have

E2 = E1T
−1ΦT = E1ΨLS . (15.43)

Note that the eigenvalues of Ψ are {z`}which would yield {θ`}. The Least-squares
ESPRIT algorithm estimates Ê1 and Ê2 and then solves

Ê2 = Ê1Ψ̂LS (15.44)

for Ψ̂LS.

(15.44) is overdetermined; the Least-squares (LS) version of ESPRIT minimises
ε = ‖Ê2 − Ê1Ψ̂‖2. Using (A.29) we have

Ψ̂ =
[
Ê

H
1 Ê1

]−1
Ê

H
1 Ê2, (15.45)

from which are calculated its eigenvalues {ẑ`} and hence {θ̂`}.

The LS Esprit algorithm when the sub-arrays are selected from a uniform linear
array with spacing d (as illustrated in Figure 15.9) is outlined below.

(1) Decide on the displacement d′ between the matched pair of sub-arrays
and calculate their selection matrices B1,B2.

(2) From the receiver outputs, estimate the cross-spectral matrix R̂x of the
full array.

(3) Calculate the eigendecomposition R̂ = P̂ Λ̂ P̂ , where the eigenvalues
(and, of course, the corresponding eigenvectors) are arranged in descend-
ing order: λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂K .

(4) Estimate the number of plane-wave arrivals L̂ (using, for example, the
AIC (15.34) or MDL (15.35) criterion).

(5) Eliminate the last L̂ columns of P̂ (corresponding to the L̂ smallest
eigenvalues) to obtain the eigenvectors of the signal subspace Ê .

(6) Calculate Ê1 = B1Ê , and Ê2 = B2Ê .

(7) Calculate Ψ̂ = (Ê1Ê1)−1Ê
H
1 Ê2.

(8) Calculate the eigenvalues {λ̂`, ` = 1, · · · L̂} of Ψ̂.

(9) Calculate the angles of arrival {θ̂`} from λ̂` = exp(2πid′ sin θ̂`/λ).

15.10.3. Total least-squares ESPRIT.

Let us consider the following (2L× 2L) matrix formed from the eigenvectors E1

and E2 of the signal space of the sub-arrays:

C =
[
EH

1
EH

2

]
[ E1 E2 ] =

[
I Ψ

ΨH I

]
(15.46)
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It is not difficult to show that C has multiple eigenvalues λmax = 2 and λmin = 0
and the eigendecomposition

C =
[
Q11 Q12
Q21 Q22

] [
Λ1 0
0 Λ2

] [
QH

11 QH
21

QH
12 QH

22

]
=

1√
2

[
I −ΨH

ΨH I

] [
2I 0
0 0

] 1√
2

[
I Ψ
−Ψ I

]
, (15.47)

where the eigenvalues are arranged in descending order.

The presence of the term Ψ indicates that the signal arrival direction could be
extracted from the eigenvectors Q̂12 and Q̂22 of C . When using estimated values,
we write

Ĉ =
[
Q̂11 Q̂12

Q̂21 Q̂22

] [
Λ̂1 0
0 Λ̂2

][
Q̂

H
11 Q̂

H
21

Q̂
H
12 Q̂

H
22

]
, . (15.48)

Golub and Van Loan [[15]] reason that, because both Ê1 and Ê2 contain errors, a
total least-squares approach should be used, in which case the estimate is

Ψ̂TLS = −Q̂12Q̂
−1
22 . (15.49)

The first 6 steps of the TLS ESPRIT algorithm follows that of the LS ESPRIT
above; the remaining steps are listed below.

(7) Create the augmented matrix

Ĉ =

[
Ê

H
1 Ê1 Ê

H
1 Ê2

Ê
H
2 Ê1 Ê

H
2 Ê2

]
(8) Calculate the eigendecomposition of Ĉ using (15.48).
(9) Calculate Ψ̂ using (15.49).

(10) Calculate the eigenvalues {λ̂`, ` = 1, · · · L̂} of Ψ̂.

(11) Calculate the angles of arrival {θ̂`} from λ̂` = exp(2πid′ sin θ̂`/λ).

15.10.4. Ambiguities.

It is important to note that, when the displacement d′ > 0.5λ, the ESPRIT algo-
rithm gives ambiguous results, analogous to grating lobes in beamforming. For
example, if d′/λ = 1, and λ̂ = 1, θ̂ = 0◦,±30◦or ± 90◦. There is no ambiguity
for d′/λ ≤ 0.5.

15.11. Overview

In this Chapter we have introduced subspace methods, in which the cross-spectral
matrix is divided into parts that correspond to signal and noise subspaces. Subspace
methods can give a precise estimate of the directions of arrival of signals. The
Pisarenko, MUSIC, Eigenvector and ESPRIT methods were described.
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With subspace methods, the number of sources has to be estimated. This can be
done using either the AIC or MDL techniques.

Summary

(1) Subspace methods can be very effective in estimating the direction of arrival of
signal sources.

(2) None of the methods described directly give information on the strengths of the
arrivals.

(3) Their performance depends on whether the noise eigenvalues are distinguishable
from the (signal+noise) eigenvalues.

(4) To estimate the number of arrivals, one can use the AIC or MDL techniques.

(5) When the signal and noise subspaces are clearly separable (as in the ideal case of
independent and identically distributed noises) subspace methods work well.

(6) When the noise eigenvalues are not clustered around one value, the techniques are
prone to serious error. Under those circumstances, the optimal beamformer often
gives more reliable results.

(7) ESPRIT gives ambiguous results when the displacement of the sub-arrays d′ >
0.5λ.



APPENDIX A

OPTIMISATION

A.1. Introduction

The following are some brief revision
notes on optimisation. We begin with
maximisation (or minimisation) of a
scalar function f(x) of a single real
variables x. If the function is dif-
ferentiable, the condition for an ex-
tremum (maximum or minimum) is

df

dx
= 0.

Maximum
f(x) 

x

FIGURE A.1. Maximisation of
function of one real variable

We can visualise maximisation of a
real function of two real variables. If
x =

[x1x2

]
, then the condition for an

extremum is
∂f

∂x1
=

∂f

∂x2
= 0.

FIGURE A.2. Maximum of
function of two real vari-
ables

A.2. Extrema of functions of K real variables

We can readily extend this concept to a real function of K real variables x1x2 · · ·xK .

209
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The condition for an extremum is that each of the K partial derivatives must be
zero:

0 =
∂f

∂x1
=

∂f

∂x2
= · · · = ∂f

∂xK
.

Let us define the operator

∂

∂x
=

∂/∂x1
∂/∂x2

...
∂/∂xK

 . (A.1)

Then the condition for an extremum is

∂f

∂x
= 0[K×1]. (A.2)

We state here two useful expressions for derivatives; if x, y are real vectors, R is
a K ×K real symmetric matrix, and A is a real L×K matrix, then

∂

∂x

(
xTRx

)
= 2Rx (A.3)

and
∂

∂x
(Ax) = AT . (A.4)

The proof of (A.3) is straightforward; noting that rjk = rkj ,

∂

∂xm

(
xTRx

)
=

∂

∂xm

K∑
j=1

K∑
k=1

xjrjkxk

=
∑
j 6=m

xjrjm +
∑
k 6=m

rmkxk + 2rmmxm

= 2
∑
j 6=m

xjrjm + 2rmmxm

= 2
∑
j=m

xjrjm (A.5)

and hence ∂
(
xTRx

)
/∂x = 2Rx.

(A.4) is derived in a similar manner.
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A.3. Constrained optimisation

In the previous section the multidimen-
sional independent variable x could take
any value. However, often there are con-
straints on the independent variable x.
Here we consider minimising or max-
imising a real function f(x) subject to
linear constraints of the form

cT
[L×K]x[K] = α[L×1] (A.6)

where c[K×L] is a K×L matrix, L < K,
and α[L×1] is a vector of dimension L.

This is illustrated for the case in which
x is a two-dimensional vector and α
is a scalar; in this case, the constraint
is a plane. For the unconstrained case,
the variable x lies on a quadratic
“bowl”. With the constraint, x lies on
the intersection of the plane and the bowl.

FIGURE A.3. Minimum of
function of two variables, with
constraint plane

To solve such a problem we employ a mathematical technique called the method
of undetermined multipliers, which is described below.

We first combine the function to be minimised and the constraint into a single
equation (called the Lagrangian):

ε = f(x)− µT (cT x −α). (A.7)

The last term vanishes when cT x = α, but for the time being we proceed as if we
did not have the constraint. µ, an L-vector, is called a Lagrange multiplier which
for the present is unknown.

To find the extremum as a function of µ, we differentiate ε with respect to xand
then solve for µ by imposing the constraint. Finally we substitute µ in the expres-
sion for x.

As an example, let us address the following problem:

Minimise
x

xTAx

subject to cT x = 1

where A is a real symmetric non-singular matrix. In this example, c is a K-vector
and α = 1.

Following the procedure described above, we first combine the function to be min-
imised and the constraint into a single equation:
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ε = xTAx − µ(cT x − 1), (A.8)
where in this example µ is a scalar. Using (A.3) and (A.4) we set dε/dx = 0 to
obtain:

x =
µ

2
A−1c. (A.9)

Now imposing the constraint:

cT x = 1, (A.10)

µ =
2

cTA−1c
(A.11)

xmin =
1

cTA−1c
A−1c, (A.12)

and the desired minimum is
εmin = xT

minAxmin (A.13)

=
1

cTA−1c
(A.14)

A.4. Real functions of complex variables

A.4.1. Rules of differentiation.

So far we have been dealing with real variables but in array signal processing we
frequently encounter complex variables. In general, we may not take derivatives
with respect to complex variables1. For example, the function ζ(z) = z∗ is not
analytic and hence is not differentiable. In all the cases we consider here it is
possible to express them as functions of real variables, but the expressions are
rather clumsy).

In the following, we introduce a convenient approach for handling real functions
ζ(w ,w∗) of complex variables, such as:

ζ(w ,w∗) = wHRw , or

ζ(w ,w∗) =
|wHv |2

wHRw
,

where R is Hermitian2, and we wish to maximise (or minimise) ζ with respect to
w .

Let us express w in terms of its real and imaginary components: w = x + iy ,
and define the operator ∇w as follows3:

1The exception is for analytic functions, i.e., those that satisfy the Cauchy-Riemann equations.
Unfortunately, the functions in array processing generally are not analytic.

2A (square) Hermitian matrix Rhas the property RH ≡ R∗T = R
3We need to stress that ∇w is not a gradient; it is only a useful shorthand. Nevertheless, under

certain quite specific conditions it bears a similarity to a gradient, as will be made apparent later.
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∇w ,
1
2

(
∂

∂x
− i

∂

∂y

)
, (A.15)

∇w∗ =
1
2

(
∂

∂x
+ i

∂

∂y

)
= (∇w)∗, (A.16)

where

∂

∂x
=

 ∂/∂x1
∂/∂x2

...
∂/∂xK .


The condition for an extremum (maximum or minimum) is

∂ζ

∂x
= 0 =

∂ζ

∂y
(A.17)

or equivalently,
∇w(ζ) = 0 = ∇w∗(ζ). (A.18)

We state the following useful principle[5].

If the real-valued function ζ(w ,wH) is differentiable by w and wH

independently, then the normal rules of differentiation of real-valued
functions apply to ∇w(ζ) and ∇w∗(ζ).

For example, we could obtain the following results either by applying the above
principle, or by using (A.15) and (A.16):

∇w∗ |wHv |2 = (vHw)v , (A.19)

∇w |wHv |2 = (wHv)v∗, (A.20)

∇w∗(wHv) = v , (A.21)

∇w(vHw) = v∗ (A.22)

∇w∗(vHw) = 0 = ∇w(wHv), (A.23)

∇w(wHRw) = Rw , (A.24)

A.4.2. Least-squares.
Let A and B be (K×L) complex matrices and X a hermitian symmetric (L×L)
matrix. We wish to select X so as to minimise the Euclidean norm

ε = ‖A − BX‖2
= Tr

(
(A − BX )H(A − BX )

)
=
∑

j

|aji|2 −
∑
j,k

a∗jibjkxki −
∑
j,k

x∗jib
∗
kjaki +

∑
j,k,`

x∗jib
∗
kjbk`x`i. (A.25)
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Setting ∇x∗rs
ε = 0 : we have

−
∑

k

b∗kraks +
∑
k,`

b∗krbk`x`s = 0

BHBX = BHA

so, if the inverse exists,

X = (BHB)−1BHA. (A.26)

A.4.3. Maximising gain.
Applying the same principle, we readily obtain

∇w
|wHv |2

(wHRw)
=

(wHRw)(vHw)v − |wHv |2Rw
(wHRw)2

. (A.27)

Hence to maximise G =
|wHv |2

(wHRw)
, for example, we set

∇wG = 0 = ∇w∗G and, using (A.27), (A.28)

∇wG =
(wHRw)(vHw)v − |wHv |2Rw

(wHRw)2
(A.29)

∇w∗G =
(wHRw)(wHv)v∗ − |wHv |2R∗w∗

(wHRw)2
, (A.30)

whence

Rw =
(

wHv

wHRw

)
v (A.31)

and

R∗w∗ =
(

vHw

wHRw

)
v∗ (A.32)

Note that, for this symmetrical function G, the second equation is simply the con-
jugate of the first.

So, if the inverse exists, the maximum is attained when

wmax = αR−1v (A.33)

where α is some scaling factor.

These results are used in Chapter 10.
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A.4.4. Minimising quadratic form subject to linear constraint.

In Chapter 10 we consider minimising a quadratic form wHRw with respect to
w subject to the constraint wHv = 1 = vHw .

To solve it we use Lagrange multipliers µ and ν∗4 and combine both the function
to be minimised and the constraints into a single equation:

ζ = wHRw − µ
[
wHv − 1

]
− ν∗

[
vHw − 1

]
. (A.34)

The condition for a minimum is

∇w∗ζ = 0 = ∇wζ. (A.35)

Using (A.21), (A.22) and (A.24)–(A.29), it can readily be shown that the two con-
ditions of (A.35) become, if the inverse exists,

Rw − µv = 0 ⇒ w = µR−1v (A.36)

and R∗w∗ − ν∗v∗ = 0 ⇒ w = νR−1v . (A.37)

Applying the constraint wHv = 1 = vHw we have

µ =
1

vHR−1v
= ν , (A.38)

and hence

w solution =
R−1v

vHR−1v
(A.39)

A.5. Gradient descent

A.5.1. Real variables.

In Section A we found the stationary point(s) of a function directly by setting the
derivative to zero. Here we develop an iterative technique for arriving at the solu-
tion.

4We use, without loss of generality, ν∗ instead of ν for convenience.
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Consider the simple quadratic function

y ≡ y(x) = y0 + γ(x− x0)2, γ ≥ 0
(A.40)

We can approach the minimum (x0, y0)
iteratively by moving in the direction of
the gradienta, using the gradient descent
method, illustrated in Figure A.5.1.
Given some approximation, x(m), at the
mth iteration, an improvement is made by
taking a step in the direction of the mini-
mum:

x(m + 1) = x(m)− µ
( dy

dx

)∣∣∣∣
x=x(m)

= x(m)− 2µγ
(
x(m)− x0

)
,

(A.41)

where µ > 0.

aA gravitational analogy of the gradient is the di-
rection in which an inertia-free ball would roll.

ζ

x

ζ(m)

ζ(m+1)

−µ . ∂ ζ /∂ x
y

x
opt

opt

gradient 
∂ ζ /∂ x

FIGURE A.4. Illustrating gradi-
ent descent – 1 dimension

The rationale for using the gradient is that, the further away we are from the mini-
mum, the greater the gradient and so also the larger the step size.

To investigate the convergence of this process, we perform a shift in axes of (A.41),

x(m + 1)− xopt = x(m)− xopt − 2µγ
(
x(m)− xopt

)
,

= (1− 2µγ)
(
x(m)− xopt

)
= · · ·

= (1− 2µγ)m+1
(
x(0)− xopt

)
, (A.42)

where x(0) is the initial approximation. Thus
lim

m→∞
x(m) = xopt if and only if |1− 2µγ| < 1 ⇐⇒ 0 < µ < 1/γ.

(A.43)

The technique can readily be extended to multivariate optimisation.

A.5.2. Gradient of a real function of a complex variable and its conjugate.

In many array beamforming algorithms we need to use the gradient of the real
scalar-valued function of a complex vector variable and of its complex conjugate,
ζ(w ,w∗). It was pointed out earlier that we cannot in general take the derivative
with respect to complex variables. However, by treating w and w∗ as indepen-
dent variables, we can determine the direction of the maximum rate of change of
ζ(w ,w∗), as follows.
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Consider the variation5:

δζ , 2
∑

k

(
∂ζ

∂xk
δxk +

∂ζ

∂yk
δyk

)
=
∑

k

(
∂ζ

∂xk
− i

∂ζ

∂yk

)
(δxk + iδyk) +

(
∂ζ

∂xk
+ i

∂ζ

∂yk

)
(δxk − iδyk)

= (∇wζ)T δw + (∇w∗ζ)T δw∗

=
(
∇w∗ζ

)H
δw +

(
∇wζ

)H
δw∗

= Re
{(
∇w∗ζ

)H
δw
}

(A.44)

From the Cauchy-Schwarz inequality6, this variation is a maximum when and only
when δw is in the same direction as ∇w∗ζ. Thus we have the following result.

The greatest change in the function ζ(w ,w∗) is in the direction of its gradient
with respect to w∗.

If w is a complex variable, the gradient descent algorithm to minimise a real func-
tion ζ(w ,w∗) is then:

w(m + 1) = w(m)− µ ∇w∗ζ(w ,w∗)|w=w(m) (A.45)

This result is used in Chapter 11.

5The factor of 2 is introduced for convenience.
6See Appendix C.
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A.6. Maximum likelihood estimator

A.6.1. Principle.
The maximum likelihood estimator is
based on the following notion. Consider
a probability density function p(x|a) of
a variable x, which depends on an un-
known parameter α . In Figure A.6 we
have sketched p(x|α) for several values
of α. Now suppose that we observe a
value x from which we wish to estimate
α.
It is natural to pick that value of α for
which p(x|a) is greatest. This is called
the maximum likelihood estimate α̂.
In other words, we select:

α̂ = arg
(
max

α
p(x|α)

)
(A.46)

p(x|α
1
)

p(x|α
2
)

p(x|α
3
)

p(x|α
4
)

α
max likelihood

FIGURE A.5. Illustrating maxi-
mum likelihood

The function l(α, x) = p(x|α) is called the likelihood function, and its logarithm,

L(α, x) = ln(p(x|α) (A.47)

is called the log-likelihood function. When L is differentiable, α̂ is a root of the
equation

∂

∂α
L(α, x) = 0. (A.48)

Take the simple case in which we have a sample of gaussian noise x of known
variance σ2 and unknown mean µ. The distribution of x will be gaussian with
mean µ and variance σ2:

p(x|µ) =
1

σ
√

2π
exp

(
− (x− µ)2/(2σ2)

)
, (A.49)

so

L(µ, x) = −(x− µ)2

2σ2
− constant (A.50)

and the solution is simply
µ̂ = x. (A.51)

The maximum likelihood estimator is particularly useful when we have a deter-
ministic unknown parameter which we wish to estimate.

The concept can readily be generalised to the multivariate case in which the un-
known scalar parameter and the observation vectors are complex. These results are
applied in Chapter 9.



APPENDIX B

RANDOM SIGNALS AND NOISE

B.1. Introduction

We present here some brief revision notes on random signals and noise.

In Chapters 1 – 6 we considered beamforming for deterministic signals. How-
ever in practice there are present internal and external noise sources with random
properties. For example, in sonar, random noise generated by the wind on the
surface of the sea is a common source of external noise, whilst in radar and com-
munications systems it is often internal receiver thermal noise that limits system
performance. Furthermore the desired signals may themselves exhibit properties
similar to random noise. For example, the pseudorandom signals used in spread
spectrum communications and GPS signal can conveniently be represented as a
random process.

Here we consider representing the receiver outputs as random processes; to do so
we first need to consider some preliminaries from the theory of random processes.

B.2. Random Variable and Probability Density Functions

A random variable, X , is a function that maps events, i.e., the outcomes of ex-
periments, into numbers. It is measurable in the sense that we can associate a
probability density function (pdf), denoted by pX(x), with it .

We shall often use the shorthand notation p(x). For example, the Gaussian random
variable X has a domain −∞ to ∞ and a probability density function given by

pX(x) ≡ p(x) =
1√
2πσ

exp
{
−(x− µ)2

2σ2

}
, (B.1)

where µ is the mean and σ is the standard deviation. We shall denote this special
type of random variable by X ∼ N(µ, σ2), where ∼ means ‘distributed as’.

The probability density function often supplies more information on the probability
properties of a random variable than we need. In particular, we often only need to
know certain moments of the random variable, where we define the j th moment,
mj by

mj =
∫ ∞

−∞
xjpX(x) dx.

219
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Some important moments of random variables are defined below:

(1) mean, µ:

m1 ≡ µ ,
∫

xpX(x) dx. (B.2)

(2) variance, σ2:

m2 ≡ σ2 ,
∫

x2pX(x) dx. (B.3)

(3) entropy1, H:

H =
∫

pX(x) log{pX(x)} dx. (B.4)

B.3. Multiple Random Variables

K multiple real random variables, {X1, X2, . . . , XK}, can be represented as a real
random vector, X

X =

X1
X2

...
XK


defined over some sample space and characterised by a joint probability density
function, i.e.,

P(X1,X2,...,XK)(X1 = x1, X2 = x2, . . . , XK = xK) = pX (X ). (B.5)

Two important quantities that often suffice for our statistical description are

(1) the mean vector, µ, defined by 2

µ =
∫

dx1

∫
dx2 · · ·

∫
dxKXpX (X ). (B.6)

(2) For zero-mean random variables, the covariance between the random
variables Xi and Xj is defined by

RXi,Xj =
∫

xixjpXiXj (xi, xj) dxi dxj . (B.7)

We now consider the important concept of statistical independence.

DEFINITION. Two random variables Xi and Xj are statistically independent if

pXiXj (xi, xj) = pXi(xi)pXj (xj).

Loosely, this states that knowledge of the distribution of Xj does not allow us to
infer anything about the distribution of Xi.3

1Entropy has a deep and fundamental link with both information theory and linear prediction.
2Exercise: Show that (µ)j =

∫
dxjpXj (xj).

3Exercise: Show that if Xi and Xj are statistically independent and zero mean, then RXi,Xj =
0.
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Example 2.0. Consider the bivariate Gaussian density when X1 and X2 are statis-
tically independent and with zero mean. In this case,

p(x1, x2) =
1

2πσ1σ2
exp

(
− x2

1

2σ2
1

− x2
2

2σ2
2

)
. (B.8)

Example 2.1. If X1 and X2 are zero mean but are not statistically independent,
then

p(x1, x2) =
1

2π(σ2
1σ

2
2 − σ2

12)1/2
exp

(
−σ2

1x
2
1 − 2σ2

12x1x2 + σ2
2x

2
2

2(σ2
1σ

2
2 − σ2

12)

)
, (B.9)

where σ12 =
∫∫

x1x2p(x1, x2) dx1 dx2.

Note that a complex random variable can be treated as a two-dimensional random
vector. The probability density p(z) of complex random variable z = u + iv is
defined by p(u, v) which denotes the probability of the complex part of the random
variable z lying close to u and the imaginary part lying close to v.

B.4. Ensemble Averaging

Given a random variable and functions of that random variable, we want to define
quantities that measure properties that are independent of the outcome of a partic-
ular experiment but reflect the outcome of all possible experiments. The collection
of the outcomes of an infinite number of experiments we term the ensemble and
when we average a quantity over all possible outcomes we form the ensemble aver-
age or expectation of a random variable . If f(X) is some function of the random
variable X then we formally define the expectation to be

EX{f(X)} =
∫

f(x)p(x) dx. (B.10)

In practice, when there is no ambiguity as to the values of the random variable over
which we are integrating we usually omit the subscript X . Note the strong intuitive
concept of linear averaging in the above definition. Some examples are

(1) The mean, µ, of a random variable is defined by µ = E{X}.
(2) The variance, σ2, of a random variable is defined by a σ2 = E{(X −

µ)2}.
(3) The entropy, H , of a random variable is defined by H = E{log(p(X))}.

Some important properties of ensemble averages are listed below.

(1) If X is a random and c is not, then E{cX} = cE{X}.
(2) If X and Y are random and c and d are not, then4 E{cf(X)+ dg(Y )} =

cE{f(X)}+ dE{dg(Y )}.
In particular, E{X + Y } = E{X}+ E{Y }.

4This result holds whether or not X and Y are independent.
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(3) If X and Y are statistically independent, then

EX,Y {f(X)g(Y )} = EX{f(X)}EY {g(Y )}.
As an example E{XY 2} = E{X}E{Y 2}.

N.B. For zero-mean variables, we say X and Y are uncorrelated if E{XY } = 0.
Thus statistical independence =⇒ uncorrelated but not vice-versa.

The above properties hold for random variables X and Y and can readily be gen-
eralised for random vectors, i.e.,

E(X1,X2,...,XK){f(X1, X2, . . . , XK)} =
∫

dx1

∫
dx2 · · ·

∫
dxKf(x1, x2, . . . , xK)

× p(X1,X2,...,XK)(x1, x2, . . . , xK).
(B.11)

B.5. Covariance Matrix

We now consider the K ×K matrix formed by taking all possible pairs of covari-
ances between the i th and j th elements of the random vector. We shall denote this
matrix by RX , and from its definition (B.7) and the definition of the ensemble
average (B.11) the (i, j) th element is given by

(RX )i,j = RXi,Xj = E(Xi, Xj). (B.12)

In matrix form, this becomes 5

RX =


E{X2

1} E{X1X2} · · · E{X1XK}
E{X2X1} E{X2

2} · · · E{X2XK}
...

...
. . .

...
E{XKX1} · · · · · · E{X2

K}

 = E{XX T } (B.13)

and is termed the covariance matrix. The covariance matrix satisfies two important
properties.

(a) RX is non-negative definite.6 It follows from (B.13) that

wTRXw = E{wTXX Tw} = E{|wTX |2} ≥ 0. (B.14)

(b) RX is a symmetric matrix (i.e., RT
X = RX ).

As an example we consider K = 2 and the zero-mean bivariate Gaussian distribu-
tion. In this case,7

RX = R2 =
[

σ2
1 σ12

σ21 σ2
2

]
. (B.15)

5Exercise: Verify that RX = E{X XT }.
6Recall that a matrix R is non-negative definite if wT Rw ≥ 0 ∀ w .
7Exercise: Show that p(X ) = p(x1, x2) = 1

2π|R2|1/2 exp[−(XT R−1
2 X/2].
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Finally we give expressions for the joint pdf of the vector, X , of K Gaussian
random variables. For real variables we have, with some liberty of notation,

pX (x) =
1

(2π)K/2|Rx|1/2
exp

(
−x

TR−1
x x

2

)
. (B.16)

For complex X ,

pX (x) =
1

(π)K |Rx|1/2
exp

(
−xTR−1

x x
)
. (B.17)

We state two useful results for the expectation of the product of four Gaussian
random variables. For real variables,

E{X1X2X3X4} =E{X1X2}E{X3X4}+ E{X1X3}E{X2X4}+
E{X1X4}E{X2X3}; (B.18)

and for complex variables

E{X1X
∗
2X3X

∗
4} = E{X1X

∗
2}E{X3X

∗
4}+ E{X1X

∗
4}E{X∗

2X3}. (B.19)

B.6. Complex random vectors

In the above we have considered only real random variables and random vectors.
However, in many array processing problems we have complex variables – for ex-
ample, in frequency-domain beamforming when we consider the complex Fourier
coefficients of the receiver outputs, which can model as complex random variables.

There are two ways to handle complex signals. The first is to consider, for K
receivers, the 2K vector consisting of the real and imaginary components; i.e., X
becomes

X = [<(X1) <(X2) · · · <(XK) =(X1) =(X2) · · · =(XK)]T .
(B.20)

To describe the statistical properties of X we need a joint probability density func-
tion with 2K real variables. However, with this approach the algebra tends to be
cumbersome.

A more elegant mathematical formulation is to let X be a K-vector with com-
plex components and to generalise the definitions in an appropriate fashion. In
particular, the covariance between Xi and Xj is defined as

RXi,Xj = E{XiX
∗
j }

and the covariance matrix definition is generalised to

RX = E{XXH},

where ·H ≡ ·∗T denotes the Hermitian (complex conjugate) transpose.

Of course the two approaches are equivalent but we should always be on guard that
the complex notation does not lead us astray – occasionally we may need to go
back to the 2K-dimensional real representation to clarify physical concepts.
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For the complex Gaussian case we have

p(X ) =
1

(π)K |RX |
exp

(
−XHR−1

X X
)
, (B.21)

where RX is now the K ×K complex covariance matrix.

B.7. Stationary Random Processes

So far in considering random variables and random vectors we have said nothing
about time. Now consider a time-varying random process from a single receiver as
illustrated below for four realisations.

0 50 100 150 200

0

0

0

0

Number of Samples

FIGURE B.1. Realisations of a random process

Each of the above signals we term a sample path or realisation of our random
process. Each realisation may be thought of as the outcome of an experiment and
the set of an infinite number of experiments is termed the ensemble of the random
process.

Considering the random process at a finite set of times t1, t2, . . . allows a rap-
prochement with our earlier ideas of a random variable and the formal introduc-
tion of probabilistic concepts. At time t1 consider an equivalent random variable
x1 = x(t1) which takes all the values that the random process could take and has
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the same probability density function say p(x1). Similarly we do so at time t2, etc.
Now in order to capture the temporal properties of the random time series, x(t),
we need to say something about how the probabilities of particular events (i.e.,
the sample values x1, x2, . . . etc. of the random process at times t1, t2, . . . etc.) at
different time are related. Again because we are considering random processes we
can only say things about the temporal relationships in a probabilistic sense and the
necessary tool for doing this is the joint probability density function of the samples
x1, x2, . . . etc. Thus we need to specify p(x1), p(x1, x2), p(x1, x2, x3), etc. at all
times. Note that these can all be obtained from p(x1, x2, . . .) as marginals. Station-
arity implies things not changing with time. For most of the random processes that
we will consider the sample values won’t be fixed in time for a particular realisa-
tion so we need to come up with an appropriate definition of stationarity. Again we
use the joint probability density function of our sampled random process and we
define a random process to be stationary if all joint probability density function’s
are independent of time. Formally this is defined as

p(x(t1) = u1, x(t2) = u2, . . .) = p(x(t1 + t0) = u1, x(t2 + t0) = u2, . . .).
(B.22)

Note this has to hold for all N and for all t0.

In a similar way to that considered for random variables the ensemble average of
some function f(x(tl), x(t2), . . .) of the samples of a random process is formally
defined by

E{f(x(t1), x(t2), . . . , x(tN ))}

=
∫∫

· · ·
∫

f(x(tl), x(t2), . . . , x(tN ))

× p(x(t1) = u1, x(t2) = u2, . . . , x(tN ) = uN ) du1 du2 · · · duN .
(B.23)

Since the joint probability density function of the samples of a stationary random
process are independent of time it follows that ensemble averages of functions of
a stationary random process will be independent of time. For example the mean
of a stationary random process is independent of time and the covariance function
depends only on time separation.



APPENDIX C

MATRIX REVISION

C.1. Introduction

We shall use bold-face characters to denote matrices and column vectors: lower-
case for vectors and upper-case for matrices. The size of the matrix may be indi-
cated specifically by subscripts; for example, A[M×N ] is an M × N rectangular
matrix, and xK is a K-dimensional column vector, as shown below.

A[M×N ] ≡ A =

[ a11 a12 . . . a1Na21 . . .
... . .

...
aM1 . . . . aMN

]
= [amn]

xK ≡ x =
[ x1x2

xK

]
.

A[K×K] is a square matrix.

The transpose of a matrix is denoted by .T and the Hermitian (i.e., complex
conjugate transpose) by .H :

AT =

[ a11 a21 . . . aM1a12 . . .
... . .

...
a1N . . . . aNM

]
.

AH =


a∗11 a∗21 . . . a∗M1
a∗12 . . .

... . .
...

a∗1N . . . . a∗NM

 .

xT = [ x1 x2 . . . xK ] (a row vector),

xH = [ x∗1 x∗2 . . . x∗K ] (a row vector).

The identity matrix is denoted by I , the unit matrix by 1, and the null vector by
0:

I =

 1 0 . . . 0
0 1 . 0
...

. . .
...

0 0 · · · 1

 , 1 =

 1
1
...
1

 , 0 =

 0
0
...
0

 .

226
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A diagonal matrix is one with all of its off-diagonal elements equal to zero:

D = diag(d ) = diag(dk; k = 1, . . . ,K) =

 d1 0 . . . 0
0 d2 . 0
...

. . .
...

0 0 · · · dK

 .

The determinant of a square matrix A is denoted by det(A).

C.2. Definitions

For a square matrix A we have the following definitions and relationships.

Determinant
det(AB ) = det(BA ) (C.1)

Symmetric matrix

A = AT , ajk = akj ∀ j, k

Skew symmetric (anti-symmetric) matrix

A = −AT , ajk = −akj ∀ j, k

Hermitian symmetric matrix

A = A∗T ≡ AH

Trace

Tr(A[K×K]) =
K∑

k=1

akk = Tr(AT ) (C.2)

Tr(A + B) = Tr(A) + Tr(B) (C.3)

Tr(AB ) = Tr(BA ) (C.4)

Singular
det(A) = 0

Nonsingular
det(A) 6= 0

C.3. Matrix operations

Addition of matrices is defined by

A[M×N ]+B [M×N ] =

 a11 + b11 a12 + b12 . . . a1N + b1N
a21 + b21 . . .

... .
. . .

...
aM1 + bM1 . · · · aMN + bMN

 = [amn + bmn]
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The product of a matrix A by a scalar α is

αA[M×N ] =

[ αa11 αa12 . . . αa1Nαa21 . . .
... .

. . .
...

αaM1 . · · · αaMN

]
= [α amn]

The product of two matrices is defined by

C [K×N ] = A[K×M ]B [M×N ] =
M∑

m=1

akmbmn

The transpose of a product is

(A[K×M ]B [M×N ])
T =

(
BT
)
[N×M ]

(
AT
)
[M×K]

The inverse A−1 of a nonsingular matrix A is defined by

A−1A = I = AA−1

For nonsingular matrices A and B , the inverse of the product, (AB)−1 , is

(AB)−1 = B−1A−1 (C.5)

The determinant of the product of a matrix A by a scalar α is given by

det(αA[K×K]) = αK det(A) (C.6)

C.4. Special matrices

Idempotent matrix
H 2 = H

Nilpotent matrix
A2 = 0 for some integer k

Orthogonal (for a real matrix A)
AA T = ATA = D , whereD is diagonal.

Orthonormal (for a real matrix A)
AA T = ATA = I

Unitary
AA H = AHA = I

Toeplitz
A[K×K] =

[
ajk : ajk = a(j+1)(k+1)

]
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A Toeplitz matrix takes the form:

A[K×K] =

 r0 r1 . . . rK−1
r−1 r0 .

... .
. . . r0r−K+1 · · · r−1 r0


C.5. Quadratic forms

For a square real symmetric matrix A and a real column vector x, we have the
non-negative (real scalar) quadratic form:

xTAx =
K∑

i,j=1

xiaijxj ≥ 0 ∀ x.

Similarly, for a Hermitian symmetric matrix A and a complex column vector x,
we have the non-negative (real scalar) Hermitian form

xHAx =
K∑

i,j=1

x∗i aijxj ≥ 0 ∀ x.

We use the following definitions1:

Positive definite (pd) matrix
xHAx > 0 ∀ x 6= 0.

Nonnegative definite (nnd) matrix
xHAx ≥ 0 ∀ x.

Positive semi-definite (psd) matrix
xHAx ≥ 0 ∀ x and
xHAx = 0 for some x 6= 0 and

C.6. Partitioned matrices

It is often useful to partition matrices into two or more sub-matrices; with appro-
priate attention to the dimensions of the matrices, operations can be carried out as
if the sub-matrices were elements.

For rectangular matrices A[(J+M)×(K+L)] and B [(K+L)×(N)] ,

A[(J+M)×(K+L)] =
[
P [J×K] Q [J×L]
R[M×K] S [M×L]

]
B [(K+L)×(N)] =

[
C [K×N ]
D [L×N ]

]
1There is not consistency in the definition of positive semi-definite matrices: some writers do

not distinguish between positive semi-definite and non-negative definite.
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then

(
A[(K+L)×(J+M)]

)T =
[
P T RT

Q T S T

]
and
(AB)[(J+M)×(N)] =

[
(PC +QD )[J×N ]

(RC + S D )[M×N ]

]

C.7. Useful formulae for determinants

C.7.1. Partitioned matrix.

det
[
A B
C D

]
= det(A) det(D − CA−1B)

= det(D) det(A − BD−1C ) (C.7)

C.7.2. Bordered matrix.

det
[
A x
xH c

]
) = det(A)

(
c− xHA−1x

)
(C.8)

det(A − cxxH) = det(A)
(
1− cxHA−1x

)
(C.9)

det(A) =
1
2
(
det(A + xxH) + det(A − xxH)

)
(C.10)

C.8. Useful formulae for matrix inverses

C.8.1. Partitioned Hermitian symmetric matrix.

[
A B
BT D

]−1
=
[
A−1 + F E −1F H −F E −1

−E −1F H E −1

]
(C.11)

=
[ (
A − BD −1BH

)−1 −F E −1

−E −1F H E −1

]
(C.12)

where E = D − BHA−1B , and F = A−1B .
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C.8.2. Bordered Hermitian symmetric matrix.

[
A B
BH d

]−1
=

 (A − BBH

d

)−1
− A−1B

d−BH A−1B

− BH A−1

d−BH A−1B
1

d−BH A−1B

 (C.13)

C.8.3. Matrix plus dyad (Woodbury’s identity).

(
A + cu v H

)−1
= A−1 − cA−1u v HA−1

1 + cv HA−1u
(C.14)

C.8.4. Inverse of sum of matrices.

For A[M×M ],D [N×N ], B [M×N ], A andD nonsingular, M < N,

(
A + BD BH

)−1
= A−1 − A−1B(BHA−1B +D −1)−1BHA−1

(C.15)

C.8.5. Elements of the inverse.

Let P = [pij ] be a nonsingular matrix,
Q be P but with the (m,n)th element reduced by unity,
R be P but with every element increased by unity, and
P −1 ≡ [p(ij)].

Then

P (mn) = 1− |Q |
|P |

and (C.16)∑
i,j

p(ij) = 1− |R|
|P |

(C.17)

C.9. Inequalities

C.9.1. Cauchy-Schwarz inequality.

For any two column vectors x, y ,

|xHy |2 ≤ (xHx)(yHy), (C.18)
with equality when and only when x ∝ y
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C.9.2. Diagonal elements of the inverse.

Lemma C.1:

If A[K×K] is positive definite and A−1 = [aij ], then

(a) aii ≥ 1/aii, with equality if and only if aij = 0 for j = 1, . . . i− 1, i + 1, . . . ,K;

(b) aii = 1/aii ∀i ⇒ aij = 0, i 6= j;

(c) |A| ≤ a11 . . . aKK with equality if and only if aij = 0, i 6= j.

C.9.3. Power of a matrix.

Lemma C.2:

Let A be a square, real, symmetric matrix with all elements non-negative. Then
for any integer n,

(xHAnx)(xHx) ≥ (xHAx)n,

with equality if and only if x is an eigenvector of A.

C.9.4. Kantorovich inequality.

If A is positive definite Hermitian with eigenvalues

{λi : λ1 ≥ λ2 ≥ . . . ≥ λK > 0}
and corresponding eigenvectors {pi}, then

1 ≤
(
xHAx

) (
xHA−1x

)
(xHx)2

≤ 1
4

((
λ1

λK

) 1
2

+
(

λK

λ1

) 1
2

)2

. (C.19)

The lower bound is attained when x is an eigenvector of A and the upper bound
when

x(p1 + pK)/
√

2.

C.9.5. Inequality involving the trace.

Let A[K×K] be positive definite Hermitian symmetric, B [K×K] be nonnegative
definite Hermitian symmetric, with eigenvalues

{λi : λ1 ≥ λ2 ≥ . . . ≥ λK > 0}
then

λ1 Tr(B) Tr(AB) ≤ λK Tr(A) (C.20)
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C.10. Generalised inverses

C.10.1. Definition.

Let A be an [M × N ] matrix. A generalised inverse (or g-inverse) of A is an
[M × N ] matrix A− such that x = A−y is a solution of Ax = y for any y
which makes the equation consistent.

C.10.2. Properties.

(1) A− exists ⇐⇒ AA−A = A.
(2) A− exists ⇐⇒ H = A−A is idempotent and rank(H ) = Tr(H ) =

rank(A).
(3) If A− exists, a general solution to the generalised inverse of the matrix

A is

A− +Z − A−AZ AA−, (C.21)

where Z is an arbitrary matrix.

C.10.3. Moore-Penrose g-inverse.

The Moore-Penrose g-inverse, or pseudo-inverse of a matrix A is denoted by A†

and has the following properties:

AA†A = A

A†AA† = A†

(AA†)H = AA†

(A†A)H = A†A. (C.22)

If A is of full rank,

A† = (AHA)−1AH . (C.23)

C.11. Kronecker product

If A[K×L] = [akl] and B [M×N ] = [bmn], their Kronecker product is defined by:

(A ⊗ B)[(KM×LN)] =

 a11B a12B · · · a1LB
a21B . . .

... .
. . .

...
aK1B . · · · aKLB

 . (C.24)
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The following relationships apply:

0 ⊗ A = A ⊗ 0 = 0,

(αA)⊗ (βB) = αβ(A ⊗ B),

(A1A2)⊗ B = A1 ⊗ B + A2 ⊗ B ,

A ⊗ (B1B2) = (A ⊗ B1)(A ⊗ B2),

(A1A2)⊗ (B1B2) = (A1B1)(A2B2). (C.25)

If A and B are of full rank, so is A ⊗ B , and

(A ⊗ B)−1 = A−1 ⊗ B−1 (C.26)

For any A,B ,

(A ⊗ B)− = A− ⊗ B− (C.27)

C.12. Calculus

C.12.1. Notation.

We often want to find the extremum (maximum or minimum) of a function, so we
need to set its derivative to zero. The derivative of a matrix A or a vector A with
respect to some real scalar variable x is defined as follows.

∂A

∂x
=

∂

∂x

[
a11 · · · a1K

...
. . .

...
aK1 · · · aKK

]
=

 ∂a11
∂x · · · ∂a1K

∂x
...

. . .
...

∂aK1
∂x · · · ∂aKK

∂x



∂a

∂x
=

∂

∂x

[
a11

...
aK1

]
=


∂a11
∂x
...

∂aK1
∂x


We can also define derivatives of a scalar function f(x) with respect to a real
vector variable x as follows:

∂

∂x
f(x) =


∂

∂x1
f(x)
...

∂
∂xK

f(x)


C.12.2. Derivative of products.

We frequently want to differentiate products of the type xTAy and quadratic
forms xTAx with respect to the real vector x. It is not difficult to show that
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∂

∂x
xTAy = Ay (C.28)

∂

∂x
xT x = 2x (C.29)

∂

∂x
xTAx = 2x (C.30)

C.12.3. Derivative of determinant.

∂ ln det(A)
∂α

= Tr
(
A−1 ∂A

∂α

)
(C.31)

C.12.4. Derivative of inverse of matrix.

∂A−1

∂α
= −A−1 ∂A

∂α
A−1 (C.32)

C.13. Eigenvalues and eigenvectors

Here we concern ourselves only with Hermitian symmetric matrices.

For a [K ×K] matrix R, the eigenvalues {λk, k = 1, · · · ,K} are the solutions to
the set of K linear equations:

det(R − λI ) = 0. (C.33)

Eigenvectors {P k, k = 1, · · · ,K} are solutions to the equation:

RP k = λkP k. (C.34)

Note that if we multiply P by any scalar, the product would still satisfy (C.34); by
convention, P is normalised so that its Euclidean (or L2) norm

‖P ‖2 =
∑

k
|pk|2 = P HP = 1. (C.35)

The eigenvectors are orthonormal:

P H
i P j = δij , (C.36)

where δij is the Kronecker product

δij = 1, i = j

= 0, i 6= j. (C.37)

If the K eigenvalues are distinct (i.e., no two are the same), then the corresponding
K eigenvectors are unique.
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All the eigenvalues of a Hermitian matrix are non-negative (λi ≥ 0 ∀i).

The eigenvalues give valuable information about a matrix. We may arrange them
in rank order: λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0 and, of course, we have to arrange their
corresponding eigenvectors P i in the same order.

Let us assemble the eigenvalues and eigenvectors to form [K × K] matrices as
follows:

P = [P 1 : P 2 : · · · : P K ] , and (C.38)

Λ[K] =

 λ1 0 · · · 0
0 λ2 0
...

. . .
...

0 0 · · · λK


= diag(λ1, λ2, · · · , λK) (C.39)

P is unitary:

P P H = P HP = I . (C.40)

It then follows from (C.34) that

RP = P Λ[K], whence

R = P Λ[K]P
H . (C.41)

This expression of a Hermitian matrix R in terms of its eigenvectors is termed
eigen-decomposition. We can use an set of K such orthonormal vectors {pi : i =
1, · · · ,K} as the basis to decompose any K-vector A :

A =
K∑

k=1

αkpk, (C.42)

where {αk, k = 1, · · · ,K} is the set of appropriate scalar weights.

If λk > 0 ∀ k, the matrix is nonsingular with inverse:

R−1 = P Λ−1P H , (C.43)

Λ−1 = diag(λ−1
1 , λ−1

2 , · · · , λ−1
K ). (C.44)

If any of the eigenvalues is zero, the matrix is singular. If K−L of the eigenvalues
are zero, the rank of the matrix is L. If all the eigenvalues are positive, the matrix
is of full rank (nonsingular).



APPENDIX D

FUNDAMENTALS OF ESTIMATION THEORY

Let x = [x1x2 . . . xN ]H be a vector of N observations of random variables with a
probability density function

p(x;α) (D.1)

where α = [α1, α2, . . . , αL]H are a set of parameters that characterize the random
process. These parameters are generally unknown in value and need be estimated.
An example is where the x1, x2, . . . , xN are samples of a zero mean Gaussian
white noise process of power σ2

x. Then the probability density function, p(x;α),
is given by

p(x;α1 = σ2
n) =

1√
2πσ2

n

exp

[
− 1

2σ2
n

N∑
n=1

x2
n

]
(D.2)

Statistical estimation theory is concerned with the problem of estimating the pa-
rameters α from the given observations (data) i.e., x. In general this will be of the
form

α̂j = g(x1, x2, . . . , xN ) (D.3)

Note that α̂j is a particular function of the observations, xj , and will take on a
certain value for a given set of xj’s. Since the xj are random it follows that α̂j is a
random variable; it is termed an estimator of αj . Any particular value it takes on is
termed an estimate. Thus taking another different set of xj’s, i.e., a different set of
observations, results in a different value for α̂j . Since α̂j is a random variable it can
be described by a probability density function and in some cases it is important to
know that. However for many purposes it suffices to be able to calculate the mean
value and the variance of α̂j . Generalising, knowing the second order statistics of
the estimators, i.e., the covariances of the total parameter set α̂1, α̂2, . . . , α̂L often
suffices for many applications.

As an example the power of a zero mean stationary random process is given by

237
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σ2
x = E

{
x2[n]

}
(D.4)

D.1. Mean Value of an Estimator

The mean value of an estimator, defined as E{α̂j} determines whether, on average,
the value of the estimate, α̂j , and that of the of the unknown parameter, αj , are
equal. If they are the estimator is said to be unbiased. The bias, b, of an estimator
is defined as

b , E{x̂− x} (D.5)

For example the estimator

σ̂2
x =

1
N

N∑
j=1

x2
j (D.6)

is an unbiased estimator of the power if the xj are known to have zero mean.

D.2. Variance of an Estimator

The variance of an estimator tells us how tightly the estimate is clustered around its
mean value. The tighter the clustering the more likely it will be that the estimate,
derived from any set of data, will be close to the true value. For example, the
estimator of the mean of a random process

µ̂x =
1
N

N∑
n=1

xn (D.7)

where E{xn} = 0 will obviously be better clustered around zero if N is large. To
see this it can be shown that the variance of µ̂x is given by

σ2(µ̂x) = E{µ̂2
x} =

1
N2

∑
n

∑
m

E{xnxm} (D.8)

which for white noise reduces to

σ2(µ̂x) =
1

N2

∑
n

∑
m

σ2
nδmn =

1
N

σ2
n (D.9)

indicating that increasing N decreases the standard deviation of the estimate.
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D.3. Proof of CRLB

D.3.1. Scalar non-random parameter.

Here a lower bound on the variance of an unbiased estimator is derived.

Let x = [x1 x2 · · ·xN ] be a vector of observations of random variables with dif-
ferentiable probability density function p(x;α), where α is an unknown real pa-
rameter, and let α̂ = f(x) be some unbiased estimator of α. It follows that

E{α̂− α} = 0 (D.10)

or ∫ ∞

−∞
· · ·
∫ ∞

−∞
(α̂− α)p(x;α)dx1 · · · dxN =

∫ ∞

−∞
(α̂− α)p(x;α)dx = 0.

(D.11)

Differentiating with respect to α gives:

∫ ∞

−∞
· · ·
∫ ∞

−∞
(α̂− α)

∂p(x;α)
∂α

dx − 1 = 0. (D.12)

Noting that

∂ ln p(x;α)
∂α

=
1

p(x;α)
∂p(x;α)

∂α
(D.13)

gives ∫ ∞

−∞
· · ·
∫ ∞

−∞

(
(α̂− α)

∂ ln p(x;α)
∂α

)
p(x;α)dx = 1

or

E

{
(α̂− α)

∂ ln p(x;α)
∂α

}
= 1. (D.14)

Taking the square of both sides and applying the Cauchy-Schwarz inequality (C.18):

E{|α̂− α|2} E

{∣∣∣∣∂ ln p(x;α)
∂α

∣∣∣∣2
}
≤ 1

or

var (α̂) ≥ 1

E

{∣∣∣∂Lx(α)
∂α

∣∣∣2} (D.15)
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where as before Lx(α) is the log-likelihood function. This is the Cramer-Rao
lower bound, a most useful inequality, which applies to any unbiased estimator of
a single real parameter α.

If the second derivative of p(x;α) exists, an alternative useful form can be obtained
as follows. Recall that

∫ ∞

−∞
p(x;α)dx = 1. (D.16)

Differentiating twice with respect to α gives

∫ ∞

−∞

∂p(x;α)
∂α

dx =
∫ ∞

−∞

∂ ln p(x;α)
∂α

p(x;α)dx = 0 (D.17)

Differentiating again with respect to α gives∫ ∞

−∞

∂2 ln p(x;α)
∂α2

p(x;α)dx +
∫ ∞

−∞

(
∂ ln p(x;α)

∂α

)2

p(x;α)dx = 0

or

E

{
∂2 ln p(x;α)
∂α2p(x;α)

}
= −E

{(
∂ ln p(x;α)

∂α

)2
}

. (D.18)

Hence from (D.15)

var(α̂) ≥ 1

E

{∣∣∣∂Lx(α)
∂α

∣∣∣2} = − 1

E
{

∂2Lx(α)
∂α2

} . (D.19)

D.3.2. Estimation of the mean.

Take the simple case of N independent random variables, all with the same known
variance σ2 and the same unknown mean µ which is to be estimated. It follows
that

E{xnxm)} = δnm(σ2 + µ2). (D.20)

Their joint probability density function is:
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p(x|µ) =
N∏

n=1

1
σ
√

2π
exp

(
−(xn − µ)2/(2σ2)

)
Lx(µ) =

N∑
n=1

−(xn − µ)2

2σ2
− constant (D.21)

Setting ∂Lx(µ)/∂µ = 0, the solution is simply

µ̂ =
1
N

N∑
n=1

xn (D.22)

The expectation is

E{µ̂} = µ (D.23)

so the estimator is unbiased. The variance of µ̂ is

var(µ̂) = E{µ̂2} − (E{µ̂})2

=
σ2

N
(D.24)

Next the Cramer-Rao lower bound is derived.

(
∂Lx(µ)

∂µ

)2

=
∑

n

∑
m

(xn − µ)(xm − µ)
σ4

so

var(µ̂) ≥ 1

E

{(
∂Lx(µ)

∂µ

)2
} =

σ2

N
. (D.25)

In this case the variance attains the lower limit. Such an estimator is said to be
efficient.

D.4. Least Squares Estimation

Least squares estimation is useful in situations where there is a linear relationship
between the unknown signal parameters α and the observations, i.e.,

xk = Akα + nk (D.26)

where xk is the vector of derivatives at time k, for k = 1, 2, . . . ,K, and nk is
additive measurement noise. Often the Ak are independent of k.
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Minimizing the quadratic

K∑
k=1

(xk − Akα)H R−1
n (xk − Akα) (D.27)

with respect to the unknown αj’s gives the following estimator

α̂LS =

(
K∑

k=1

AH
k Ak

)−1( K∑
k=1

AH
k xk

)
(D.28)

In the above Rn = E{nkn
H
k }.

When the Ak are independent of k the above reduces to

α̂LS =
1
K

(
AHA

)−1
AH

K∑
k=1

xk (D.29)

D.5. Bias of LS Estimator

Substituting the above equation for the xk in the expression for α̂LS gives

α̂LS =

(
T∑

k=1

AH
k Ak

)−1 T∑
k=1

AH
k (Akα + nk)

=

(
T∑

k=1

AH
k Ak

)−1( T∑
k=1

AH
k Ak

)
α +

(
T∑

k=1

AH
k Ak

)−1 T∑
k=1

AH
k nk

= α +

(
T∑

k=1

AH
k Ak

)−1 T∑
k=1

AH
k nk (D.30)

Now taking an ensemble average over the nk, gives

E{α̂LS} = α +

(
T∑

k=1

AH
k Ak

)−1 T∑
k=1

AH
k E{nk}

= α (D.31)

Thus the LS estimator is unbiased.

D.6. Covariance of the LS Estimator

From (D.30)
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α̂LS − α =

(
T∑

k=1

AH
k Ak

)−1 T∑
k=1

AH
k E{nk} (D.32)

Thus

E
{

(α̂LS − α) (α̂LS − α)H
}

= E


(

T∑
k=1

AH
k Ak

)−1( T∑
k=1

AH
k nk

)(
T∑

k=1

nH
k Ak

)(
T∑

k=1

AH
k Ak

)−1


=


(

T∑
k=1

AH
k Ak

)−1 T∑
k′=1

T∑
k=1

AH
k E

{
nkn

H
k′
}
Ak′

(
T∑

k=1

AH
k Ak

)−1


=


(

T∑
k=1

AH
k Ak

)−1( T∑
k=1

AH
k Ak

)(
T∑

k=1

AH
k Ak

)−1


=

(
T∑

k=1

AH
k Ak

)−1

(D.33)



APPENDIX E

PROBLEMS

E.1. Mechanical vs Electronic steering

Discuss the difference between a mechanically steered and an electronically steered
array.

B Back to Course Notes

E.2. Beamwidth

Consider a linear array of K � 1 equi-spaced receivers, with its beam steered in
the horizontal plane (φ = 90◦.)

(1) Derive an expression for the beamwidth of the main lobe as a function of
the horizontal steer angle θ. (Hint: consider separately the beamwidth in
the vicinity of 90◦.

(2) Write Matlab code for the beamwidth and plot as a function of θ.

B Back to Course Notes

E.3. Beampattern nulls

Consider an array of 8 receivers equally spaced λ/2 apart.

(1) Determine the positions of nulls of the beampattern of a beam steered at
broadside.

(2) How many beams overlapping at ∼ −3.9dB points are required for com-
plete angular coverage over 360◦?

(3) What are the steering directions of these beams?

(4) Write down the steering vector in each case.

Re-do the question for the case in which the spacing is λ/4.

B Back to Course Notes
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E.4. Interferences

Consider a linear array of equally spaced receivers. There is uncorrelated receiver
noise present. A beam is steered at broadside in the direction of a plane-wave
signal whose with a signal-to-(receiver) noise ratio of 0dB. An interfering plane-
wave signal is incident upon the array from some angle θ and the interference-to-
receiver noise ratio is 10dB.

(1) Power from the interference will leak into the broadside beam through
its sidelobes. What is the minimum signal-to-interference ratio provided
that the interference is not within the main beamwidth?

(2) What is the maximum signal-to-interference ratio and when does it oc-
cur?

(3) What happens when the interference-to-receiver noise ratio is increased
to 30dB?

B Back to Course Notes

E.5. Beampattern vs frequency

Consider a linear array of K equally spaced receivers, where K is large (> 10,
say), and use as a reference the beampattern when the receivers are spaced half a
wavelength apart.

(1) What would you expect to happen to the beamwidth and the amplitude of
the first sidelobe if the frequency is now reduced?

(2) Briefly give reasons for your answer.

B Back to Course Notes

E.6. Beamwidth and array geometry

Consider two arrays, each with adjacent receivers spaced a distance d apart: one is
linear and with a beam steered broadside, and the second is circular. Which array
would have the narrower beamwidth and why?

B Back to Course Notes

E.7. Beampattern of rectangular array

Consider a 3× 4 rectangular array located in the (x, y) plane with spacings dx and
dy between columns and rows, respectively.
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t t t t

t t t t

t t t tdx� -

dy

6

?

(1) Write down an expression for the steering vector of this array.

(2) Hence, or otherwise, derive an expression for the beampattern of this
array

B Back to Course Notes

E.8. 2-receiver array

t

t

6

?

��
��

+ -

(1) Write down an expression
for the beampattern of a
two-element array steered
at broadside (as illustrated).

(2) Plot this as a function of
the incidence angle when
d/λ = 1, 1/2, 1/4, 1/8.

t

t

6

?

��
��
- -

Repeat for the two-receiver array
(but with sign change) as shown, for
d/λ = .5.
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B Back to Course Notes

E.9. Grating lobes

Consider a linear array of equally spaced receivers.

(1) Derive an expression for the positions of the grating lobes when the array
is steered in an arbitrary direction θ.

(2) When the receivers are spaced half a wavelength apart, derive the posi-
tions of the grating lobes of a beam steered at broadside.

B Back to Course Notes

E.10. Multipath arrivals

t t t t t t t
Array

-

6
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Path3

Consider an array of hydrophone (underwater acoustic receivers) towed as a linear
array, as illustrated in the sketch showing a section in the vertical (y − z) plane.
Wanted signals are in the horizontal (x − y) plane of the array and beams are
steered over angles 0 ≤ θ ≤ 180◦ in the expectation that signals will only arrive
from sources in the horizontal plane.

However, there is an interfering signal source which arrives at the array via three
paths (all in the y − z plane). The arrivals via the three paths are assumed to be
independent.

Path1 will appear in the beam of the array steered at end-fire.

(1) Where will the signals from Path2 and Path3 appear?

(2) Discuss in terms of the cones of symmetry for a linear array.
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E.11. Towed array shape errors

You have a linear array of hydrophones (acoustic receivers) in a flexible hose
(called a ‘streamer’) towed behind a ship in the x−direction as illustrated. The
weight of the tow cable keeps the array at its operating depth. The streamer is
made neutrally buoyant (i.e., with the same density as sea water) so that it tends to
stream horizontally.

FIGURE E.1. Array towed behind ship

t t t t t t q q q t6

?
?

6

?

6
6

The array is meant to be straight. However, because of hydrodynamic forces, the
receivers are slightly displaced in the y− and z− directions. Assume that these
displacements are random and unknown, and that there are no displacements in the
x− direction.

(1) Consider the pattern of a beam steered at broadside. What would you
expect to be the effect of the displacements on:
(a) the main lobe,

(b) the first sidelobe,
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(c) the sidelobe furthest from the main lobe?
In each case, briefly give your reasons.

(2) Consider next the pattern of a beam steered at end fire. What would you
expect to be the effect of the displacements on:
(a) the main lobe,

(b) the first sidelobe,

(c) the sidelobe furthest from the main lobe,
In each case, briefly give your reasons.

B Back to Course Notes

E.12. Null-steering 1

t t
t t

� Main lobe

@
@

@
@

@I

Null

Consider the array shown. Write down the 2 × 4 constraint matrix for steering
a main lobe in the x−direction and a null in the direction −45◦. Find the weight
vectors using the Moore-Penrose pseudo-inverse.

B Back to Course Notes

E.13. Steering multiple nulls

To derive an expression for the null-steering beamformer we seek a solution to

Aw = δL+1
1 ,

where

A =


vH(k)
vH(k1)

...
vH(kL)

 ,
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k is the beamsteering wavevector and k1, k2, · · · , kL are the wavevectors corre-
sponding to L null directions, and

δ
(L+1)
1 =

1
0
...
0

 .

A general solution is

w = A−δ
(L+1)
1 ,

where A− is a generalised inverse of A.

A special case is the Moore-Penrose generalised inverse denoted by A†; when(
AAH

)
is non-singular,

A† = AH
(
AAH

)−1

and the so-called minimum-norm solution is

w = AH
(
AAH

)−1
δ
(L+1)
1 .

Verify by direct multiplication that a general form for w is

w = A†δ
(L+1)
1 + (I − A†A)z ,

where z is an arbitrary vector.

B Back to Course Notes

E.14. Symmetries

What are the symmetries of the following arrays?

(a)t t t t t t t t (b)

t t t t

t
t

t
t

t
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(c)

t t t t
t t t t
t t t t
t t t t

(d)

t
tt

t
t

t t
B Back to Course Notes

E.15. Beampattern of staggered array

t t t td1 d1 d1
t t td2 d2 d2

q q q t d1
t d2

t
Derive an expression for the beampattern of the staggered array of 2K receivers as
shown.

B Back to Course Notes

E.16. N sub-arrays of K receivers

Consider an array of N equi-spaced sub-arrays as illustrated below, but aligned
along the y-axis .

t t . . . t t t . . . t t t . . . t
1 2 . . . K 1 2 . . . K 1 2 . . . K

� -d2 �-d1

Each sub-array is a linear array of K equi-spaced receivers spaced a distance d1

apart. There are N sub-arrays and the first receiver of adjacent sub-arrays are d2

apart. Consider the situation where all the receivers are summed to steer a beam in
the broadside direction.

(1) Using the Principle of Beampattern Multiplication, derive an expression
for the beampattern of the full array.

(2) Sketch on the same axis (do not use Matlab) the beampattern of a sub-
array and that of the an array of K receivers spaced d2 apart as a function
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of (ks)y for the following cases.

(a) d2 = 4Kd1

(b) d2 = 2Kd1

(c) d2 = Kd1

B Back to Course Notes

E.17. Time vs frequency domain beamforming

Discuss the differences between time domain and frequency domain beamforming.
Discuss under what conditions one would use one in preference to the other.

B Back to Course Notes

E.18. Time delays

t
t
t

d

d

t

t

2d

2d

t
t

d

d

Consider a 7-element receiver array aligned along the y−axis
as illustrated.

(1) Calculate the receiver time delays required to steer a
beam in direction θ.

(2) Write down an expression for the steering vector of
phase delays.

(3) Evaluate this steering vector for the broadside and
end-fire directions when d/λ = 1/2, where λ is the
wavelength.

B Back to Course Notes

E.19. Time delays for circular array

Consider a circular array of K receivers in the x− y plane.
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z 

y 

x 

Derive the time delays for a signal incident on the array from direction θ, φ.

B Back to Course Notes

E.20. Circular array

Consider an array of seven omnidirectional receivers equally spaced around the
circumference of a circle of radius r as illustrated below. If a plane wave is incident
upon the array from a direction θs within the plane of the array, derive expressions
for the time delays required to add, in phase, the receiver outputs from this plane
wave.

θ
s

r 

Incoming plane
wavefront 

FIGURE E.2. Conventional beamformer – steered broadside

(1) Write down the steering vector as a function of θs and r/λ.
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(2) Derive an analytic expression for the beampattern of this array.

B Back to Course Notes

E.21. Time sampling errors

Consider a linear array of K receivers equally spaced by a distance d. The receiver
outputs are sampled simultaneously every T seconds. Beams are formed by time
delay and summing (i.e., in the time domain).

(1) Derive an expression for the steering angles at which no degradation of
the beams occurs.

(2) Find a relationship between d and T such that no spatial or temporal
aliasing occurs, and discuss your result in the context of (2) above.

B Back to Course Notes

E.22. Wavenumber

t

t

t

t

2d

2d

2d

2d

t

t

t

t

3d

3d

3d

(1) Plot the ky (wavenumber) responses of the staggered
array shown for d/λ = 1, 0.5 and 0.25.

(2) Interpret and discuss their features.
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E.23. Cross-spectral matrix

Consider the array shown.

tdt
3d

t2d

t

(1) Single arrival
(a) Write down the cross-spectral matrix for a narrow-

band complex plane wave arriving from direction
θs and power at the receivers of σ2

s . (Hint: consider
the phase vector and the expression for the cross-
spectral matrix in terms of this phase vector.)

(b) Modify the cross-spectral matrix to incorporate
identically distributed uncorrelated receiver noise of
power σ2

n.

(c) Write down the expression for the steered beam-
former mean output power as a function of the
steering angle θ.

(d) For θs = −45◦ and d/λ = 0.5, plot this as a function
of θ, −90◦ ≤ θ ≤ 90◦, and for signal-to-noise ratios
(σ2

s/σ2
n) of −10, 0 and +10dB.

(2) Two arrivals.
(a) Repeat the above but with two incident plane waves which are sta-

tistically independent of one another, arriving from θ1 = 0◦ and
θ2 = 45◦.

(b) Keeping the signal-to-noise ratios of both arrivals constant at +10dB,
investigate and discuss the effect of varying θ2.

(c) Keeping the signal strength of the first arrival σ2
0 constant at +10dB,

and the direction of the second arrival θ2 constant at 45◦, investigate
and discuss the effect of varying the signal-to-noise ratio σ2

45of the
second arrival.

B Back to Course Notes

E.24. Gain of 3-receiver array

Consider a linear array with 3 receivers spaced d apart; a beam is steered at broad-
side using conventional processing.
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(1) Derive an expression for the gain of the array in uncorrelated noise of
power σ2

n and a single interference from 45◦ with a power of σ2
i .

(2) Set the uncorrelated noise power to 0dB and the interference power to
10dB and plot the gain as a function of d/λ for a sensible range of d/λ.

(3) Interpret and discuss your results.
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E.25. Array gain of rectangular array

Consider a rectangular array of Ky × Kx receivers as shown, in the presence of
uncorrelated receiver noise. There is no other noise present. A beam is steered in
the horizontal direction.

t t t
t t t
t t t

q q q
q q q
q q q

t
t
t

t t t tq q q
qqq qqq qqq qqq

Kx

Ky -
Beamsteered direction

(1) Derive an expression for array gain as a function of the number of re-
ceivers K = Kx ×Ky.

(2) Does varying the steering angle affect this result?

B Back to Course Notes

E.26. Gain in isotropic noise

Consider the case of a linear array with K equally spaced receivers in a spherically
isotropic noise field and steered end-fire using conventional beamforming. All
other noise sources may be neglected. If the spacing between adjacent receivers is
d = nλ/4 where λ is the wavelength, show that the array gain is K.

B Back to Course Notes
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E.27. Null-steering 2

Consider an arbitrary array of K receivers operating in the frequency domain. Let
P (k, ks) be the beampattern of this array for conventional processing, where ks

is the wavevector of the signal and k is that of the beamsteered direction.

(1) Write down without proof an expression for the gain of the array for a
plane-wave signal with wavevector ks, a noise cross-spectral matrix Rn,
and a vector of beamformer weights w(ks).

———————-

Consider now the case in which all the noises are independent and the beamformer
is required to steer a single null in a direction with wavevector k1.

(2) Write down an expression for the weight vectorw(k) of this null-steering
beamformer, and hence prove that the gain is

Gnullsteer = K
(
1− P (k1, ks)

)

−50 0 50
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

dB

Degrees

Beam pattern 
P(k, ks) 

Beampattern of
conventional beamformer P (k, ks)

———————-

(3) If the first sidelobe of P (k, ks) has an amplitude of -10dB at ksidelobe,
what are the array gains of

(a) the conventional beamformer and

(b) the null-steering beamformer

when the null is placed at the peak of that sidelobe (k1 = ksidelobe)?
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−50 0 50
−50

−45

−40
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−25
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−15

−10

−5

dB

Degrees

Steer a null in direction 
of the first sidelobe 

Steering a single null at the
first sidelobe of the conventional

conventional beamformer
———————-

(4) Without detailed derivation, discuss what would be the effect on the gain
of moving k1 in successive steps into the main beam of P (k, ks)?

−50 0 50
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

dB

Degrees

Move null in steps 
into main lobe 

Moving the null towards
and into the main lobe

———————-

(5) If there is an interference of amplitude +30dB at ki = ksidelobe and a
null is placed at k1 = ksidelobe, what would the gains of

(a) the conventional and

(b) null-steering beamformers

then be?

B Back to Course Notes
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E.28. Kantorovich inequality

The Kantorovich inequality states that, for a positive definite Hermitian symmetric
[K ×K] matrix R with eigenvalues

{λmax ≡ λ1 ≥ · · ·λk ≥ λK ≡ λmin},

(xHx)2 ≤ (xHRx)(xHR−1x) ≤ (xHx)2

4

{(
λmax

λmin

)1/2

+
(

λmin

λmax

)1/2
}2

.

(E.1)

(1) Show that the lower bound is attained when x = pk, where pk is any
eigenvector of R.

(2) Show that the upper bound is attained when

x =
(pmax + pmin)√

2
,

where pmax and pmin are the eigenvectors of R corresponding to the
largest and smallest eigenvalues λmax and λmin, respectively.

(3) Comment on whether in general pk can correspond to a realisable signal
wavevector and take the form

pk ∝ v(ks) = [vj(ks] =
[
exp i2π(kT

s uj)
]
,

where uj is the vector of coordinates of the jth receiver and ks is the
signal wavevector.

B Back to Course Notes

E.29. Spherically isotropic noise

Consider the case of a linear array of receivers equally spaced d apart, the ambi-
ent noise is spherically isotropic (and there are no interferences present) and the
receiver noise is uncorrelated.

(1) Write down an expression for the cross-spectral matrix of the noiseRn(f)
as a function of d/λ, where λ is the wavelength.
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(2) Give a situation in which the performance of the optimal beamformer will
be identical to that of the conventional when the beamsteered direction is
broadside.

(3) In the situation you have just given above, is there any difference when
the beamsteered direction is end-fire.

B Back to Course Notes

E.30. Correlated noise field

Consider a linear array of K equi-spaced receivers in a noise field with correlation
function of the form rn(s) = exp−(|αs|), where s is the distance between any
two points in the array[?].

(1) Show that the cross-spectral matrix takes the form

Rn = σ2
n


1 a a2 · · · aK−1

a 1 a
...

a2 a 1
...

. . . a
aK−1 · · · a 1

 .

(2) Demonstrate that for K = 4 the inverse is

R−1
n =

1
σ2

n(1− a2)

 1 −a 0 0
−a 1 + a2 −a 0
0 −a 1 + a2 −a
0 0 −a 1

 .

(3) What are the optimal (MVDR) weights when the beamsteered direction
is broadside and

(a) the noise field is spatially uncorrelated (a = 0),
(b) partially correlated (a = 0.5) and
(c) highly correlated (a = 1− ε, ε � 1)?

(4) What is the optimal array gain as a function of a?

B Back to Course Notes

E.31. Array position errors

You have a linear array of receivers, equally spaced half a wavelength apart,
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There is a strong interfering signal arriving as a plane wavefront from a distant
source.

You have designed two processors, both intended to detect a signal arriving from
broadside:

• a conventional, unshaded beamformer, and

• an optimal (MVDR) processor.

(1) First consider the situation in which the desired signal is in the far field
and arrives as a plane wavefront. Unknown to you, some receivers are
slightly displaced from their correct positions, all randomly left or right
along the axis of the array as illustrated below.

t t t t t t q q q t- � � - � - -

What would you expect the effect of these displacements to be on the
array gain for the conventional and optimal beamformers? Briefly explain
your reasoning.

(2) Next take the case in which you again have random displacements of the
receivers, but all up or down as illustrated below.

t t t t t t q q q t6

?

?

6

?

6
6

Again, what would you expect the effect of these displacements to be
on the array gain for the conventional and optimal beamformers? Briefly
explain your reasoning.

(3) Finally, consider the situation in which you thought the desired signal
was from a distant source, arriving as a plane wavefront and designed
your processors accordingly. But instead – and unknown to you – it is in
fact from a nearby source that arrives as a slightly curved wavefront, as
illustrated below.
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Signal wrongly assumed
to arrive as plane    
wavefront             

Actual signal is in near 
field and arrives as a   
slightly curved wavefront

Array

Strong plane−wave
interference     

Which of the processors would be more affected by the curvature of
the wavefront, and why?

B Back to Course Notes

E.32. Optimal beamformer

Consider the steered beamformer output for a general array of K receivers, using
the exact cross-spectral matrix of the receiver outputs Rx(f).

Take the situation in which there is present uncorrelated receiver noise and several
plane-wave interferences, and the level of ambient noise is negligible.

(1) Give an example in which the optimal beamformer will provide a much
larger array gain than the conventional beamformer.

(2) Comment on the computational precision required in this case.

(3) How will the gain of the optimal beamformer compare with that of the
conventional

(a) when the beamsteered direction is pointed directly at a strong inter-
ference,

(b) when the (uncorrelated) receiver noise is much stronger than the in-
terferences?
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(4) Next consider the practical case in which Rx(f) has to be estimated from
M observations of the receiver outputs x̃(f). State a situation in which
the optimal beamformer will give little improvement in array gain over
the conventional when using the estimated matrix R̂x(f).

B Back to Course Notes
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List of symbols

Symbol Definition Page
·̂ estimator ??
αj weighting coefficients for shading ??
α(k , ω) complex amplitude at the origin ??
β interference-to-receiver noise ratio ??
∆T sampling interval ??

δ
(L+1)
1 the

(
(L + 1) × 1

)
column vector with all entries equal to

zero except the first which is equal to 1
??

κ forgetting factor ??
λ wavelength ??
λ′ component of the wavelength of the incoming signal, re-

solved along the length of the linear array
??

θs horizontal angle of signal ??
φs vertical angle of signal ??
σ2

s(f) power of the incident signal at frequency f ??
τj(θ) time delay for the jth receiver to steer the beam in the di-

rection θ
??

χ2
2M Chi-square distribution with 2M degrees of freedom ??
A 2×K matrix formed from the signal and interference vec-

tors
??

c speed of propagation in the medium ??
d inter-element spacing of a uniform linear array of receivers ??
E{·} Expectation ??
f frequency ??
f(u , t) propagating field ??
G Array gain ??
Gconv Gain of the conventional beamformer ??
Gmax gain maximum gain ??

266
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Symbol Definition Page
J0 zero-th order spherical Bessel function ??
K number of receivers in the array 29
ks signal wavevector ??
ki interference wavevector ??
(ks)y component of wave-vector along axis of linear array ??
ky spatial frequency 91
L number of signal sources ??
ñ(f) noise vector ??
P (θ, θs) beampattern of array steered in direction θ ??
P (ky, (ks)y) Beampattern of array steered in wavevector direction ky as

a function of wavevector component (k s)y

91

pconv(k ) mean output power from the array ??
pn output power of the array in the absence of signal ??
ps array output power in the absence of noise ??
pX (x (t)) joint p.d.f. of receiver outputs ??
p(xi(t1), xj(t2)) joint p.d.f of xi(t1) and xj(t2) ??
R s(f) cross-spectral matrix of signal ??
R n(f) cross-spectral matrix of noise 105
R iso cross-spectral matrix of spherically isotropic noise ??
R 2d-iso cross-spectral matrix of 2-dimensional isotropic noise ??
R Xi,Xj (t1, t2) cross covariance function ??
R x(t1, t2) covariance matrix ??
SNR signal-to-noise ratio ??
SNRbeam signal-to-noise ratio out of beamformer ??
SNRreceiver signal-to-noise ratio at a single receiver ??
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Symbol Definition Page
s̃ (ks, f) signal vector ??
sj(t, θs) signal at the jth receiver ??
s(t) output of the receiver located at the origin ??
s (t) vector of receiver signal outputs ??
Tgap interval between blocks of data ??
Tr(·) trace of a matrix ??
u vector of coordinates of a point in space ??
v (θs) steering vector ??
w generalised weighting vector ??
w Capon(k) weights for maximum likelihood (Capon) estimator ??
wmax gain weights that maximise gain ??
w MMSE(k) weights for minimum mean-square error processor ??
w MVDR(k) weights for minimum variance distortionless response

(MVDR) processor
??

xj(t) continuous time output of the j th receiver ??
x (t) vector of time output of receivers ??
x̃ (f) vector of Fourier transformed receiver outputs ??
y(t) time series of the output of the array processor ??
y(θ, θs, t) output of the array processor ??
ỹ(θ, φ, f) continuous Fourier transform of a beam steered in direction

{θ, φ}
??

ỹ(θ, f) output of a frequency-domain beam steered in direction θ ??
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