The beam alignment requirements for the next generation of lepton colliders have become increasingly challenging. As an example, the alignment requirements for the three major collider components of the CLIC linear collider are as follows. Before the first beam circulates, the Beam Position Monitor (BPM), Accelerating Structures (AS) and quadrupoles will have to be aligned up to 10 µm w.r.t. a straight line over 200-m-long segments, along the 20 km of linacs. PACMAN is a study on Particle Accelerator Components’ Metrology and Alignment to the Nanometre scale. It is an Innovative Doctoral Program, funded by the EU and hosted by CERN, providing high quality training to 10 Early Stage Researchers working towards a PhD thesis. The technical aim of the project is to improve the alignment accuracy of the CLIC components by developing new methods and tools addressing several steps of alignment simultaneously, to gain time and accuracy. The tools and methods developed will be validated on a test bench. This paper presents the technical systems to be integrated in the test bench, the results of the compatibility tests performed between these systems, as well as the final design of the PACMAN validation bench.