ABSTRACT
Prisoner's Dilemma (PD) is a widely studied game that plays an important role in Game Theory. This paper aims at extending PD Tournaments to the case of infinite, finite or infinitesimal payoffs using Sergeyev's Infinity Computing (IC). By exploiting IC, we are able to show the limits of the classical approach to PD Tournaments analysis of the classical theory, extending both the sets of the feasible and numerically computable tournaments. In particular we provide a numerical computation of the exact outcome of a simple PD Tournament where one player meets every other an infinite number of times, for both its deterministic and stochastic formulations.
KEYWORDS
Game Theory; Prisoner’s Dilemma; Iterated Games; Numerical Infinitesimals; Infinity Computing; Grossone Methodology
LINK