This article presents a cryptographic hardware (HW) accelerator supporting multiple advanced encryption standard (AES)-based block cipher modes, including the more advanced cipher-based MAC (CMAC), counter with CBC-MAC (CCM), Galois counter mode (GCM), and XOR-encrypt-XOR-based tweaked-codebook mode with ciphertext stealing (XTS) modes. The proposed design implements advanced and innovative features in HW, such as AES key secure management, on-chip clock randomization, and access privilege mechanisms. The system has been tested in a RISC-V-based system-on-chip (SoC), specifically designed for this purpose, on an Ultrascale + Xilinx FPGA, analyzing resource and power consumption, together with system performances. The cryptoprocessor has been then synthesized on a 7-nm CMOS standard-cells technology; performances, complexity, and power consumption information are analyzed and compared with the state of the art. The proposed cryptoprocessor is ready to be embedded within the innovative European Processor Initiative (EPI) chip.
Keywords: Cryptography, Security, Registers, Europe, Clocks, Computer architecture, Very large scale integration.