Foto 7

C. Bua, L. Borgianni, D. Adami, S. Giordano: “Reinforcement Learning-Driven Digital Twin for Zero-Delay Communication in Smart Greenhouse Robotics”, Agriculture 2025, June 2025.

Written by

This study presents a networked cyber-physical architecture that integrates a Reinforcement Learning-based Digital Twin (DT) to enable zero-delay interaction between physical and digital components in smart agriculture. The proposed system allows real-time remote control of a robotic arm inside a hydroponic greenhouse, using a sensor-equipped Wearable Glove (SWG) for hand motion capture. The DT operates in three coordinated modes: Real2Digital, Digital2Real, and Digital2Digital, supporting bidirectional synchronization and predictive simulation. A core innovation lies in the use of a Reinforcement Learning model to anticipate hand motions, thereby compensating for network latency and enhancing the responsiveness of the virtual–physical interaction. The architecture was experimentally validated through a detailed communication delay analysis, covering sensing, data processing, network transmission, and 3D rendering. While results confirm the system’s effectiveness under typical conditions, performance may vary under unstable network scenarios. This work represents a promising step toward real-time adaptive DTs in complex smart greenhouse environments.

DOI: https://www.mdpi.com/2077-0472/15/12/1290