Within the framework of the Compact Linear Collider Study (CLIC) at CERN, new sensing and actuators technologies must be developed in order to achieve the required performance. An ITN Marie Curie Skowoska project funded by the European Union was launched in 2013. This project is a study on Particle Accelerator Components Metrology and Alignment to the Nanometre Scale, named PACMAN [2]. The project team consists of ten early stage researchers, divided in four work packages focusing on different tasks. Each of them is developing innovative transducers overperforming the current state of the art. Their main tasks are high-precision metrology and fiducialization, magnets prequalification and determination of magnetic axis under the constraint of small aperture (below 10 mm), determination of electrical center of a 15 GHz Radio Frequency-Beam Position Monitor (RF-BPM) and the electro-magnetic axis of an accelerating cavity, improvement of an existing seismic sensor to guarantee an optimized alignment process. The project has now been running for two years at CERN, resulting in dramatic progress for each of the early stage researchers. Their work already lead to building new experiments and proofs of concepts that are to be assembled in a unique, flexible, and compact test bench.