Foto 7

Polito G, Robbiano V, Cozzi C, [...] Barillaro, G. Template Assisted Preparation of Micrometric Suspended Membrane Lattices of Photoluminescent and Non-Photoluminescent Polymers by Capillarity-Driven Solvent Evaporation:Application to Microtagging.

Written by

Scientific Report, 7, 8351, 2017

Abstract: In this work, the bottom-up template-assisted preparation of high-density lattices (up to 11 · 10 6 membranes/cm 2) of suspended polymer membranes with micrometric size (in the order of few μm 2) and sub-micrometric thickness (in the order of hundreds of nm) is demonstrated for both photoluminescent and non-photoluminescent polymers by capillarity-driven solvent evaporation. Solvent evaporation of low concentration polymer solutions drop-cast on an array of open-ended micropipes is shown to lead to polymer membrane formation at the inlet of the micropipes thanks to capillarity. The method is proven to be robust with high-yield (>98%) over large areas (1 cm 2) and of general validity for both conjugated and non-conjugated polymers, e.g. poly(9,9-di-n-octylfluorene-alt-benzothiadiazole (F8BT), poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV), polystyrene (PS), thus breaking a new ground on the controlled preparation of polymer micro and nanostructures. Angle dependence and thermal stability of photoluminescence emission arising from F8BT membrane lattices was thorough investigated, highlighting a non-Lambertian photoluminescence emission of membrane lattices with respect to F8BT films. The method is eventually successfully applied to the preparation of both photoluminescent and non-photoluminescent micro Quick Response (μQR) codes using different polymers, i.e. F8BT, MDMO-PPV, PS, thus providing micrometric-sized taggants suitable for anti-counterfeiting applications.