Recently, the avenue of adaptable, soft robotic hands has opened simplified opportunities to grasp different items; however, the potential of soft end effectors (SEEs) is still largely unexplored, especially in human-robot interaction. In this paper, we propose, for the first time, a simple touch-based approach to endow a SEE with autonomous grasp sensory-motor primitives, in response to an item passed to the robot by a human (human-to-robot handover). We capitalize on human inspiration and minimalistic sensing, while hand adaptability is exploited to generalize grasp response to different objects. We consider the Pisa/IIT SoftHand (SH), an under-actuated soft anthropomorphic robotic hand, which is mounted on a robotic arm and equipped with Inertial Measurement Units (IMUs) on the fingertips. These sensors detect the accelerations arisen from contact with external items. In response to a contact, the hand pose and closure are planned for grasping, by executing arm motions with hand closure commands. We generate these motions from human wrist poses acquired from a human maneuvering the SH to grasp an object from a table. We obtained 86% of successful grasps, considering many objects passed to the SH in different manners. We also tested our techniques in preliminary experiments, where the robot moved to autonomously grasp objects from a surface. Results are positive and open interesting perspectives for soft robotic manipulation.