In this work we present a novel wearable haptic system based on an elastic fabric which can be moved forward and backward over the user forearm thus simulating a human caress. The system allows to control both the velocity of the "caress-like" movement, by regulating motor velocity, and the "strength of the caress", by regulating motor positions and hence the force exerted by the fabric on the user forearm. Along with a description of the mechanical design and control of the system, we also report the preliminary results of psycho-physiological assessment tests performed by six healthy participants. Such an assessment is intended as a preliminary characterization of the device capability of eliciting tactually emotional states in humans using different combinations of velocity and caress strength. The emotional state is expressed in terms of arousal and valence. Moreover, the activation of the autonomic nervous system is also evaluated through the analysis of the electrodermal response (EDR). The main results reveal a statistically significant correlation between the perceived arousal level and the "strength of the caress" and between the perceived valence level and the "velocity of the caress". Moreover, we found that phasic EDR is able to discern between pleasant and unpleasant stimuli. These preliminary results are very encouraging and confirm the effectiveness of this device in conveying emotional-like haptic stimuli in a controllable and wearable fashion.
Keywords: Autonomic nervous system; Device capabilities; Elastic fabrics; Electrodermal response; Emotional state; Forward-and-backward; Mechanical design; Psycho-physiological
File: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6775522